首页> 外文期刊>Neurocomputing >Robust subspace neuro-fuzzy system with data ordering
【24h】

Robust subspace neuro-fuzzy system with data ordering

机译:具有数据排序功能的强大子空间神经模糊系统

获取原文
获取原文并翻译 | 示例

摘要

Neuro-fuzzy systems are known for their ability to both approximate and generalize presented data. In real life data sets not always all attributes (dimensions) of data are relevant or have the same importance. Some of them may be noninformative or unnecessary. This is why subspace technique is applied. Unfortunately this technique is vulnerable to noise and outliers that are often present in real life data. The paper describes a subspace neuro-fuzzy system with data ordering technique. Data items are ordered and assigned with typiCalities. Data items with low typicalities have lower influence on the elaborated fuzzy model. This technique makes fuzzy models more robust to noise and outliers. The paper is accompanied by numerical experiments on real life data sets. (C) 2017 Elsevier B.V. All rights reserved.
机译:神经模糊系统以其近似和概括呈现数据的能力而闻名。在现实生活中,数据集并非总是数据的所有属性(维度)都是相关的或具有相同的重要性。其中一些可能是非信息性的或不必要的。这就是为什么要应用子空间技术的原因。不幸的是,该技术容易受到现实数据中经常出现的噪声和离群值的影响。本文描述了一种具有数据排序技术的子空间神经模糊系统。数据项已订购并分配了典型性。低典型性的数据项对精细的模糊模型的影响较小。这种技术使模糊模型对噪声和离群值的鲁棒性更高。本文伴随着对现实生活数据集的数值实验。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号