首页> 外文期刊>Neurocomputing >Action recognition by saliency-based dense sampling
【24h】

Action recognition by saliency-based dense sampling

机译:通过基于显着性的密集采样进行动作识别

获取原文
获取原文并翻译 | 示例

摘要

Action recognition, aiming to automatically classify actions from a series of observations, has attracted more attention in the computer vision community. The state-of-the-art action recognition methods utilize dense sampled trajectories to build feature representations. However, their performances are limited due to action region clutters and camera motions in real world applications. No matter how the scenario changes in different backgrounds, the salient cues of actions are highly dependent on their appearances and motions. Based on this discovery, in this paper we propose a novel saliency-based dense sampling strategy named improved dense trajectories (iDT) on salient region-based contrast boundary (iDT-RCB). Without any external human detector, a robust mask is generated to overcome the limitations of global contrast based saliency in action sequences. Warped optical flow is exploited to adjust the interest points sampling to remove subtle motions. We show that an appropriate pruning of feature points can achieve a good balance between saliency and density of the sampled points. Experiments conducted on three benchmark datasets have demonstrated the effectiveness of the proposed method. More specifically, the fusion of deep-learned features and our hand-crafted features can even improve the recognition performance over baseline dense sampling methods. In particular, the fusion scheme achieves the state-of-the-art accuracy at 73.8% and 94.8% on Hollywood2 and UCF50, respectively.
机译:动作识别旨在自动根据一系列观察结果对动作进行分类,在计算机视觉界引起了越来越多的关注。最新的动作识别方法利用密集的采样轨迹来构建特征表示。但是,由于动作区域混乱和现实应用中的相机运动,它们的性能受到限制。无论场景在不同背景下如何变化,动作的显着线索在很大程度上取决于其外观和动作。基于这一发现,本文提出了一种基于显着性的密集采样策略,即基于显着区域的对比边界(iDT-RCB)上的改进的密集轨迹(iDT)。无需任何外部人体检测器,就可以生成健壮的蒙版,以克服动作序列中基于全局对比度的显着性的限制。利用扭曲的光流来调整兴趣点采样以消除细微的运动。我们表明,对特征点进行适当的修剪可以在显着性和采样点的密度之间实现良好的平衡。在三个基准数据集上进行的实验证明了该方法的有效性。更具体地说,深度学习特征与我们手工制作的特征的融合甚至可以比基线密集采样方法提高识别性能。特别是,融合方案在Hollywood2和UCF50上分别达到了73.8%和94.8%的最新精度。

著录项

  • 来源
    《Neurocomputing》 |2017年第may2期|82-92|共11页
  • 作者单位

    Wuhan Univ, State Key Lab Software Engn, Wuhan 430072, Peoples R China|Wuhan Univ, Sch Comp, Natl Engn Res Ctr Multimedia Software, Wuhan 430072, Peoples R China|Guilin Univ Elect Technol, Sch Math & Comp Sci, Guangxi Coll & Univ Key Lab Data Anal & Computat, Guilin 541004, Peoples R China;

    Wuhan Univ, State Key Lab Software Engn, Wuhan 430072, Peoples R China|Wuhan Univ, Sch Comp, Natl Engn Res Ctr Multimedia Software, Wuhan 430072, Peoples R China;

    Wuhan Univ, Sch Comp, Natl Engn Res Ctr Multimedia Software, Wuhan 430072, Peoples R China|Wuhan Univ, Key Lab Multimedia & Network Commun Engn, Wuhan 430072, Peoples R China;

    Univ Cent Florida, Ctr Res Comp Vis, Orlando, FL 32816 USA;

    Wuhan Univ, Sch Comp, Natl Engn Res Ctr Multimedia Software, Wuhan 430072, Peoples R China;

    Wuhan Univ, Sch Comp, Natl Engn Res Ctr Multimedia Software, Wuhan 430072, Peoples R China;

    Calif State Univ San Bernardino, Sch Comp Sci & Engn, San Bernardino, CA 92407 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Region-based Contrast Boundary; Warped flow evaluation; Robust salient mask; Trajectory-pooled Deep-convolutional Descriptor(TDD);

    机译:基于区域的对比度边界;扭曲流评估;鲁棒显着遮罩;轨迹合并的深度卷积描述符(TDD);

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号