首页> 外文期刊>Neurocomputing >Neighborhood geometry based feature matching for geostationary satellite remote sensing image
【24h】

Neighborhood geometry based feature matching for geostationary satellite remote sensing image

机译:基于邻域几何的对地静止卫星遥感图像特征匹配

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we focus on Global Self-consistent, Hierarchical, High-resolution Geography (GSHHG) database registration for remote sensing images taken from geostationary meteorological satellites. While the accuracy of feature matching is the key component. To improve it, we propose a neighborhood geometry-based feature matching scheme which includes three steps: neighborhood coding, verification and fitting. (1) Neighborhood coding represents landmarks of GSHHG as a descriptive bit-matrix, and quantifies remote sensing images to a probability-based edge map and a binary geometry-based edge map. As a result, both gradient arid geometry similarity of local features in the remote sensing image and GSHHG can be measured. (2) Neighborhood verification is to encode spatial relationship among local features in neighbor, and discover outliers. (3) Neighborhood fitting fits the shorelines of GSHHG with the landmarks registered by neighborhood verification to improve recall. Experimental results on 25 pairs of newly annotated images show that the proposed method is competitive to several prior arts with respect to matching accuracy. What is more, our method is significantly more efficient than others.
机译:在本文中,我们集中于全球自洽,分层,高分辨率地理(GSHHG)数据库注册,以获取来自对地静止气象卫星的遥感图像。而特征匹配的准确性是关键。为了改进它,我们提出了一种基于邻域几何的特征匹配方案,该方案包括三个步骤:邻域编码,验证和拟合。 (1)邻域编码将GSHHG的界标表示为描述性位矩阵,并将遥感图像量化为基于概率的边缘图和基于二进制几何形状的边缘图。结果,可以测量遥感图像和GSHHG的局部特征的梯度和几何相似度。 (2)邻域验证是对邻域局部特征之间的空间关系进行编码,并发现异常值。 (3)邻里拟合将GSHHG的海岸线与通过邻里验证注册的地标相匹配,以提高召回率。在25对新注释的图像上的实验结果表明,该方法在匹配精度方面与几种现有技术相比具有竞争力。而且,我们的方法比其他方法有效得多。

著录项

  • 来源
    《Neurocomputing》 |2017年第may2期|65-72|共8页
  • 作者单位

    Shanghai Univ, Key Lab Specialty Fiber Opt & Opt Access Networks, Shanghai, Peoples R China;

    Shanghai Univ, Key Lab Specialty Fiber Opt & Opt Access Networks, Shanghai, Peoples R China;

    Shanghai Univ, Key Lab Specialty Fiber Opt & Opt Access Networks, Shanghai, Peoples R China;

    Shanghai Univ, Key Lab Specialty Fiber Opt & Opt Access Networks, Shanghai, Peoples R China;

    Univ Texas San Antonio, San Antonio, TX USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Feature matching; Neighborhood geometry; Geostationary satellite remote sensing image; GSHHG database;

    机译:特征匹配;邻域几何;对地静止卫星遥感图像;GSHHG数据库;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号