首页> 外文期刊>Neurocomputing >Data augmentation for unbalanced face recognition training sets
【24h】

Data augmentation for unbalanced face recognition training sets

机译:不平衡人脸识别训练集的数据增强

获取原文
获取原文并翻译 | 示例

摘要

Face recognition remains a challenging problem. While one-to-one face verification has been largely tackled, verification-based classification problem still demands effort. To further enhance the verification models, one solution is to fully utilize the unbalanced training sets, where, while abundant samples are provided for some subjects, there are often so few samples available for the rest. These subjects with too few samples can contribute little to the model learning. Therefore, before training a model, algorithms usually perform data augmentation on the whole dataset, especially on subjects with insufficient samples. In this paper, a new augmentation method is proposed, targeting on data augmentation for face classification algorithms. Instead of directly manipulating the input image, we perform virtual sample generating on feature level. The distribution of feature maps is first estimated, then random noise consistent to the distribution is applied to the feature vectors of training samples. Our method is based on Joint Bayesian Face Analysis, and we also develop an algorithm to boost the whole procedure. We conduct experiments based on high dimensional LBP features and features extracted by a shallow Convolutional Neural Network, and succeed to verify the effectiveness of this method, using image data from benchmark dataset LFW.
机译:人脸识别仍然是一个具有挑战性的问题。尽管一对一的人脸验证已得到很大解决,但基于验证的分类问题仍然需要付出努力。为了进一步增强验证模型,一种解决方案是充分利用不平衡的训练集,在这种训练集中,虽然为某些主题提供了丰富的样本,但对于其他主体而言,通常可用的样本很少。这些样本太少的主题对模型学习的贡献很小。因此,在训练模型之前,算法通常会对整个数据集执行数据增强,尤其是对样本不足​​的对象。本文针对人脸分类算法的数据增强提出了一种新的增强方法。代替直接操作输入图像,我们在功能级别执行虚拟样本生成。首先估计特征图的分布,然后将与分布一致的随机噪声应用于训练样本的特征向量。我们的方法基于联合贝叶斯人脸分析,并且我们还开发了一种算法来增强整个过程。我们基于高维LBP特征和浅层卷积神经网络提取的特征进行了实验,并使用基准数据集LFW中的图像数据成功验证了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号