首页> 外文期刊>Neurocomputing >A two-stage model for time series prediction based on fuzzy cognitive maps and neural networks
【24h】

A two-stage model for time series prediction based on fuzzy cognitive maps and neural networks

机译:基于模糊认知图和神经网络的两阶段时间序列预测模型

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a two-stage prediction model, for multivariate time series prediction based on the efficient capabilities of evolutionary fuzzy cognitive maps (FCMs) enhanced by structure optimization algorithms and artificial neural networks (ANNs). In the first-stage, an evolutionary FCM is constructed automatically from historical time series data using the previously proposed structure optimization genetic algorithm, while in the second stage, the produced FCM defines the inputs in an ANN which next is trained by the back propagation method with momentum and Levenberg-Marquardt algorithm on the basis of available data. The structure optimization genetic algorithm for automatic construction of FCM is implemented for modeling complexity based on historical time series data, selecting the most important nodes (attributes) and interconnections among them thus providing a less complex and efficient FCM-based model. This model is used next as input in an ANN. ANNs are used at the final process for making time series prediction considering as inputs the concepts defined by the produced FCM. The previously proposed structure optimization genetic algorithm for FCM construction by historical data as well as the ANN have been already proved their efficacy on time series forecasting. The performance of the proposed approach is presented through the analysis of multivariate historical data of benchmark datasets for making predictions. The multivariate analysis of historical data is held for a large number of input variables, like season, month, day or week, holiday, mean and high temperature, etc. The whole approach was implemented in an intelligent software tool initially deployed for FCM prediction. Through the experimental analysis, the usefulness of the new two-stage approach in time series prediction is demonstrated, by calculating seven prediction performance indicators which are well known from the literature.
机译:本文基于结构优化算法和人工神经网络(ANN)增强的进化模糊认知图(FCM)的有效功能,提出了用于多变量时间序列预测的两阶段预测模型。在第一阶段,使用先前提出的结构优化遗传算法从历史时间序列数据中自动构建进化FCM,而在第二阶段,所产生的FCM定义了ANN中的输入,然后通过反向传播方法对其进行训练基于动量和Levenberg-Marquardt算法(基于可用数据)。实现了用于FCM自动构建的结构优化遗传算法,用于基于历史时间序列数据建模复杂度,选择最重要的节点(属性)和它们之间的互连关系,从而提供了一个不太复杂和高效的基于FCM的模型。接下来,将该模型用作ANN中的输入。在最终过程中使用ANN进行时间序列预测,并考虑由生产的FCM定义的概念作为输入。以往提出的历史数据和人工神经网络提出的结构优化遗传算法用于FCM施工已经证明了其在时间序列预测中的有效性。通过对基准数据集的多变量历史数据进行分析来提出所提出方法的性能,以进行预测。针对大量输入变量(例如季节,月,日或周,假日,均值和高温等)进行历史数据的多变量分析。整个方法在最初用于FCM预测的智能软件工具中实现。通过实验分析,通过计算七个文献中众所周知的预测性能指标,证明了新的两阶段方法在时间序列预测中的有用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号