首页> 外文期刊>Neurocomputing >Semi-supervised learning of local structured output predictors
【24h】

Semi-supervised learning of local structured output predictors

机译:局部结构化输出预测变量的半监督学习

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we study the problem of semi-supervised structured output prediction, which aims to learn predictors for structured outputs, such as sequences, tree nodes, vectors, etc., from a set of data points of both input-output pairs and single inputs without outputs. The traditional methods to solve this problem usually learn one single predictor for all the data points, and ignore the variety of the different data points. Different parts of the data set may have different local distributions and require different optimal local predictors. To overcome this disadvantage of existing methods, we propose to learn different local predictors for neighborhoods of different data points, and the missing structured outputs simultaneously. In the neighborhood of each data point, we proposed to learn a linear predictor by minimizing both the complexity of the predictor and the upper bound of the structured prediction loss. The minimization is conducted by gradient descent algorithms. Experiments over four benchmark data sets, including DDSM mammography medical images, SUN natural image data set, Cora research paper data set, and Spanish news wire article sentence data set, show the advantages of the proposed method. (C) 2016 Elsevier B.V. All rights reserved.
机译:在本文中,我们研究了半监督结构化输出预测的问题,该问题旨在从两个输入输出对的数据点集合中学习结构化输出的预测器,例如序列,树节点,向量等。单输入无输出。解决该问题的传统方法通常为所有数据点学习一个单独的预测变量,而忽略不同数据点的多样性。数据集的不同部分可能具有不同的局部分布,并且需要不同的最佳局部预测变量。为了克服现有方法的这一缺点,我们建议针对不同数据点的邻域以及丢失的结构化输出同时学习不同的局部预测器。在每个数据点附近,我们建议通过最小化预测器的复杂度和结构化预测损失的上限来学习线性预测器。通过梯度下降算法进行最小化。在包括DDSM乳腺摄影医学图像,SUN自然图像数据集,Cora研究论文数据集和西班牙新闻通讯文章句子数据集在内的四个基准数据集上进行的实验证明了该方法的优势。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号