首页> 外文期刊>Neurocomputing >Feature selection and multiple kernel boosting framework based on PSO with mutation mechanism for hyperspectral classification
【24h】

Feature selection and multiple kernel boosting framework based on PSO with mutation mechanism for hyperspectral classification

机译:基于PSO和突变机制的高光谱分类特征选择和多核增强框架

获取原文
获取原文并翻译 | 示例

摘要

Hyperspectral remote sensing sensors can capture hundreds of contiguous spectral images and provide plenty of valuable information. Feature selection and classification play a key role in the field of HyperSpectral Image (HSI) analysis. This paper addresses the problem of HSI classification from the following three aspects. First, we present a novel criterion by standard deviation, Kullback-Leibler distance, and correlation coefficient for feature selection. Second, we optimize the SVM classifier design by searching for the most appropriate value of the parameters using particle swarm optimization (PSO) with mutation mechanism. Finally, we propose an ensemble learning framework, which applies the boosting technique to learn multiple kernel classifiers for classification problems. Experiments are conducted on benchmark HSI classification data sets. The evaluation results show that the proposed approach can achieve better accuracy and efficiency than state-of-the-art methods. (C) 2016 Elsevier B.V. All rights reserved.
机译:高光谱遥感传感器可以捕获数百个连续光谱图像,并提供大量有价值的信息。特征选择和分类在高光谱图像(HSI)分析领域起着关键作用。本文从以下三个方面探讨了恒指的分类问题。首先,我们通过标准差,Kullback-Leibler距离和相关系数为特征选择提出了一种新颖的标准。其次,我们通过使用具有变异机制的粒子群优化(PSO)搜索最合适的参数值来优化SVM分类器设计。最后,我们提出了一个整体学习框架,该框架应用了boosting技术来学习用于分类问题的多个内核分类器。实验是对基准HSI分类数据集进行的。评估结果表明,与最新方法相比,该方法可以实现更高的准确性和效率。 (C)2016 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2017年第12期|181-190|共10页
  • 作者单位

    China Univ Geosci Beijing, Sch Informat Engn, Beijing 100083, Peoples R China|Beijing Union Univ, Coll Automat, Beijing 100101, Peoples R China;

    China Univ Geosci Beijing, Sch Informat Engn, Beijing 100083, Peoples R China|TELECOM SudParis, Dept Comp Sci, F-91001 Evry, France;

    Beijing Normal Univ, Sch Business, Beijing 100875, Peoples R China;

    West Virginia Univ, Secur & Optimizat Networked Globe Lab, Montgomery, WV 25136 USA;

    China Univ Geosci Beijing, Sch Informat Engn, Beijing 100083, Peoples R China|Beijing Union Univ, Coll Automat, Beijing 100101, Peoples R China;

    China Univ Geosci Beijing, Sch Informat Engn, Beijing 100083, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Ensemble learning; Feature selection; Hyperspectral remote sensing image; Multiple kernel boosting;

    机译:集成学习;特征选择;高光谱遥感图像;多核增强;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号