机译:基于PSO和突变机制的高光谱分类特征选择和多核增强框架
China Univ Geosci Beijing, Sch Informat Engn, Beijing 100083, Peoples R China|Beijing Union Univ, Coll Automat, Beijing 100101, Peoples R China;
China Univ Geosci Beijing, Sch Informat Engn, Beijing 100083, Peoples R China|TELECOM SudParis, Dept Comp Sci, F-91001 Evry, France;
Beijing Normal Univ, Sch Business, Beijing 100875, Peoples R China;
West Virginia Univ, Secur & Optimizat Networked Globe Lab, Montgomery, WV 25136 USA;
China Univ Geosci Beijing, Sch Informat Engn, Beijing 100083, Peoples R China|Beijing Union Univ, Coll Automat, Beijing 100101, Peoples R China;
China Univ Geosci Beijing, Sch Informat Engn, Beijing 100083, Peoples R China;
Ensemble learning; Feature selection; Hyperspectral remote sensing image; Multiple kernel boosting;
机译:基于核的基于RBF核的SVM特征选择方法用于高光谱图像分类
机译:基于PSO的高光谱图像分类自动相关性确定和特征选择系统
机译:稀疏Hilbert Schmidt独立准则和基于替代核的特征选择用于高光谱图像分类
机译:使用PSO和核方法进行高光谱分类的特征选择
机译:基于假设余量的加权,用于使用增强的特征选择:理论,算法和应用。
机译:基于近红外高光谱成像和特征选择的单玉米内核的Aflatoxin B1浓度的分类
机译:基于近红外高光谱成像和特征选择的单玉米内核的Aflatoxin B1浓度的分类