首页> 外文期刊>Neurocomputing >Study on compressed sensing reconstruction algorithm of medical image based on curvelet transform of image block
【24h】

Study on compressed sensing reconstruction algorithm of medical image based on curvelet transform of image block

机译:基于图像块的Curvelet变换的医学图像压缩感知重建算法研究

获取原文
获取原文并翻译 | 示例

摘要

Traditional MRI technology may easily generate artifact due to slow imaging speed, therefore, MRI has low imagining quality and over-long sampling duration. Since wavelet transform cannot achieve the best approximation, image block theory is introduced in compressed sensing image reconstruction. In combination of the advantage of curvelet transform it is suitable for expressing edge detail information and curve information, curvelet transform is utilized to conduct sparse representation of MRI image and proposed compressed sensing reconstruction algorithm of MRI image based on curvelet transform of image block. Signal to Noise Ratio (SNR), Relative L2 norm error (RLNE) and matching degree served as the evaluation indexes, and 4 groups of experiments about the influence of noise-free image, noised image, different sampling frequencies and different regularization parameters on the quality of reconstructed image were done. The results show that during image reconstruction, the algorithm proposed in this paper is superior to SIDCT and PBDCT in terms of three evaluation indexes. Besides, the algorithm owns strong ability to resist noise and good effects on keeping image detail and edge. (C) 2016 Elsevier B.V. All rights reserved.
机译:传统的MRI技术由于成像速度慢,很容易产生伪影,因此MRI成像质量低,采样时间过长。由于小波变换无法实现最佳逼近,因此在压缩传感图像重建中引入了图像块理论。结合curvelet变换的优点,它适合于表示边缘细节信息和曲线信息,利用curvelet变换进行MRI图像的稀疏表示,并提出了基于图像块的curvelet变换的MRI图像压缩感知重建算法。信噪比(SNR),相对L2范数误差(RLNE)和匹配度作为评估指标,并进行了4组关于无噪声图像,噪声图像,不同采样频率和不同正则化参数对噪声影响的实验。重建图像的质量。结果表明,在图像重建过程中,本文提出的算法在三个评价指标上均优于SIDCT和PBDCT。此外,该算法具有较强的抗噪能力,在保持图像细节和边缘方面效果良好。 (C)2016 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2017年第12期|191-198|共8页
  • 作者单位

    South Cent Univ Nationalities, Coll Elect & Informat Engn, Hubei Key Lab Intelligent Wireless Commun, Wuhan 430074, Peoples R China;

    South Cent Univ Nationalities, Coll Elect & Informat Engn, Hubei Key Lab Intelligent Wireless Commun, Wuhan 430074, Peoples R China;

    South Cent Univ Nationalities, Coll Elect & Informat Engn, Hubei Key Lab Intelligent Wireless Commun, Wuhan 430074, Peoples R China;

    South Cent Univ Nationalities, Coll Elect & Informat Engn, Hubei Key Lab Intelligent Wireless Commun, Wuhan 430074, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Wavelet transform; Curvelet transform; Compressed sensing; Regularization parameter; Sampling frequency; SNR;

    机译:小波变换;曲线变换;压缩感测;正则化参数;采样频率;信噪比;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号