首页> 外文期刊>Neurocomputing >A robust coherent point drift approach based on rotation invariant shape context
【24h】

A robust coherent point drift approach based on rotation invariant shape context

机译:基于旋转不变形状上下文的鲁棒相干点漂移方法

获取原文
获取原文并翻译 | 示例

摘要

Point set matching is a common problem in many domains, such as medical image analysis, object recognition, 3D reconstruction, and motion tracking. Coherent point drift (CPD) appears as an efficient algorithm to align two point sets. It treated point set matching as a problem of Gaussian mixture density estimation. But there are four drawbacks in the CPD method: outlier ratio given manually, equal prior probability for the mixture model, lack of shape information and failure for large rotation transformations. To deal with these limitations, we propose a robust CPD approach based on rotation invariant shape context. First, a rotation invariant shape context (RISC) is constructed for each point of the two sets to keep the rotation invariance of shape features. Then an adaptive prior probability and outlier ratio are computed based on RISC. For each Gaussian mixture model (GMM) component, the prior probability is linked to the number of the sample points derived from this component. Finally, the correspondence and transformation are achieved through expectation-maximization (EM) process. The results on synthetic and real data show that our method is a robust and effective non-rigid point matching approach.
机译:点集匹配是许多领域的常见问题,例如医学图像分析,对象识别,3D重建和运动跟踪。相干点漂移(CPD)似乎是对齐两个点集的有效算法。它把点集匹配作为高斯混合密度估计的一个问题。但是CPD方法有四个缺点:手动指定异常值比率,混合模型的先验概率相等,缺少形状信息以及旋转转换失败。为了解决这些局限性,我们提出了一种基于旋转不变形状上下文的鲁棒的CPD方法。首先,为两个集合的每个点构造一个旋转不变形状上下文(RISC),以保持形状特征的旋转不变性。然后基于RISC计算自适应先验概率和离群值比率。对于每个高斯混合模型(GMM)组件,先验概率都与从该组件派生的采样点数量相关。最后,通过期望最大化(EM)过程实现了对应和转换。综合和真实数据的结果表明,我们的方法是一种鲁棒且有效的非刚性点匹配方法。

著录项

  • 来源
    《Neurocomputing》 |2017年第5期|455-473|共19页
  • 作者单位

    Shanghai Jiao Tong Univ, Inst Image Proc & Pattern Recognit, Key Lab Syst Control & Informat Proc, Minist Educ, Shanghai, Peoples R China;

    Shanghai Jiao Tong Univ, Inst Image Proc & Pattern Recognit, Key Lab Syst Control & Informat Proc, Minist Educ, Shanghai, Peoples R China;

    Shanghai Maritime Univ, Merchant Marine Coll, Shanghai, Peoples R China;

    Shanghai Jiao Tong Univ, Inst Image Proc & Pattern Recognit, Key Lab Syst Control & Informat Proc, Minist Educ, Shanghai, Peoples R China;

    Univ Lyon, INSA Lyon, Inserm U1206, CNRS UMR5220,CREATIS, Villeurbanne, France;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    CPD; Rotation invariant shape context; Adaptive prior probability; Adaptive outlier ratio; Point set matching;

    机译:CPD;旋转不变形状上下文;自适应先验概率;自适应离群比;点集匹配;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号