首页> 外文期刊>Neurocomputing >Auto-painter: Cartoon image generation from sketch by using conditional Wasserstein generative adversarial networks
【24h】

Auto-painter: Cartoon image generation from sketch by using conditional Wasserstein generative adversarial networks

机译:自动画家:使用条件性Wasserstein生成对抗网络从素描生成卡通图像

获取原文
获取原文并翻译 | 示例

摘要

Recently, realistic image generation using deep neural networks has become a hot topic in machine learning and computer vision. Such an image can be generated at pixel level by learning from a large collection of images. Learning to generate colorful cartoon images from black-and-white sketches is not only an interesting research problem, but also a useful application in digital entertainment. In this paper, we investigate the sketch-to-image synthesis problem by using conditional generative adversarial networks (cGAN). We propose a model called auto-painter which can automatically generate compatible colors given a sketch. Wasserstein distance is used in training cGAN to overcome model collapse and enable the model converged much better. The new model is not only capable of painting hand-draw sketch with compatible colors, but also allowing users to indicate preferred colors. Experimental results on different sketch datasets show that the auto-painter performs better than other existing image-to-image methods. (C) 2018 Elsevier B.V. All rights reserved.
机译:最近,使用深度神经网络生成逼真的图像已成为机器学习和计算机视觉中的热门话题。通过从大量图像中学习,可以在像素级别生成此类图像。学习从黑白草图生成彩色卡通图像不仅是一个有趣的研究问题,而且还是在数字娱乐中的有用应用。在本文中,我们通过使用条件生成对抗网络(cGAN)研究草图到图像的合成问题。我们提出了一个称为自动绘画的模型,该模型可以根据草图自动生成兼容的颜色。 Wasserstein距离用于训练cGAN以克服模型崩溃并使模型更好地收敛。新模型不仅能够以兼容的颜色绘制手绘草图,而且还允许用户指示首选的颜色。在不同草图数据集上的实验结果表明,自动绘制工具的性能优于其他现有的图像到图像方法。 (C)2018 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2018年第15期|78-87|共10页
  • 作者单位

    Beihang Univ, Sch Automat Sci & Elect Engn, Intelligent Comp & Machine Learning Lab, Beijing, Peoples R China;

    Beihang Univ, Sch Automat Sci & Elect Engn, Intelligent Comp & Machine Learning Lab, Beijing, Peoples R China;

    Beihang Univ, Beijing Adv Innovat Ctr Biomed Engn, Dept Biol Sci & Med Engn, Beijing, Peoples R China;

    Samsung Telecommun Res Inst, Beijing, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Auto-painter; GAN; Wasserstein distance; WGAN; Deep learning; Neural networks;

    机译:汽车画家GAN瓦瑟斯坦距离WGAN深度学习神经网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号