首页> 外文期刊>Neurocomputing >Implementing multivariate statistics-based process monitoring: A comparison of basic data modeling approaches
【24h】

Implementing multivariate statistics-based process monitoring: A comparison of basic data modeling approaches

机译:实施基于多元统计的过程监控:基本数据建模方法的比较

获取原文
获取原文并翻译 | 示例

摘要

The development of large interconnected plants has brought the need for the development of active and accurate performance monitoring methods. The commonly used approach to this problem is implementing the multivariate statistics-based process monitoring (MSPM). In MSPM, data modeling methods play the central role in developing normal operation models, based on which the monitoring statistics can be used to track the process operating performance. This paper seeks to perform a comparison study on the commonly used data modeling methods in the MSPM field, including principal component analysis, partial least squares, and canonical correlation analysis, to provide users and practitioners with informative details such that useful guidance can be offered to select the preferable methods. The interconnections between each two of them are first investigated. Then, dynamic extensions based on their static formulations including how they modify and resolve objective functions are revealed. Using the simulated data from the continuous stirred tank reactor benchmark process and real industrial data from the hot strip rolling mill process, parts of theoretical results are validated. (c) 2018 Elsevier B.V. All rights reserved.
机译:大型互连工厂的发展带来了对开发主动且准确的性能监控方法的需求。解决此问题的常用方法是实施基于多元统计的过程监控(MSPM)。在MSPM中,数据建模方法在开发正常操作模型中起着核心作用,在此基础上,监​​视统计信息可用于跟踪流程操作性能。本文旨在对MSPM领域中常用的数据建模方法进行比较研究,包括主成分分析,偏最小二乘和规范相关分析,以为用户和从业人员提供有益的信息,从而为用户提供有用的指导。选择首选方法。首先研究它们中每两个之间的互连。然后,揭示了基于其静态公式的动态扩展,包括它们如何修改和解决目标函数。使用来自连续搅拌釜反应器基准工艺的模拟数据和来自热轧带钢轧机工艺的实际工业数据,对部分理论结果进行了验证。 (c)2018 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2018年第may17期|172-184|共13页
  • 作者单位

    Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Minist Educ, Key Lab Knowledge Automat Ind Proc, Beijing 100083, Peoples R China;

    Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Minist Educ, Key Lab Knowledge Automat Ind Proc, Beijing 100083, Peoples R China;

    Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Minist Educ, Key Lab Knowledge Automat Ind Proc, Beijing 100083, Peoples R China;

    Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Minist Educ, Key Lab Knowledge Automat Ind Proc, Beijing 100083, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Multivariate statistics; Process monitoring; Data modeling; Dynamic extension; Fault detection;

    机译:多元统计;过程监控;数据建模;动态扩展;故障检测;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号