首页> 外文期刊>Neurocomputing >Ensemble of optimized echo state networks for remaining useful life prediction
【24h】

Ensemble of optimized echo state networks for remaining useful life prediction

机译:优化的回波状态网络的集合,以预测剩余使用寿命

获取原文
获取原文并翻译 | 示例

摘要

The use of Echo State Networks (ESNs) for the prediction of the Remaining Useful Life (RUL) of industrial components, i.e. the time left before the equipment will stop fulfilling its functions, is attractive because of their capability of handling the system dynamic behavior, the measurement noise, and the stochasticity of the degradation process. In particular, in this paper we originally resort to an ensemble of ESNs, for enhancing the performances of individual ESNs and providing also an estimation of the uncertainty affecting the RUL prediction. The main methodological novelties in our use of ESNs for RUL prediction are: i) the use of the individual ESN memory capacity within the dynamic procedure for aggregating of the ESNs outcomes; ii) the use of an additional ESN for estimating the RUL uncertainty, within the Mean Variance Estimation (MVE) approach. With these novelties, the developed approach outperforms a static ensemble and a standard MVE approach for uncertainty estimation in tests performed on a synthetic and two industrial datasets. (C) 2017 Elsevier B.V. All rights reserved.
机译:使用回声状态网络(ESN)来预测工业组件的剩余使用寿命(RUL),即设备停止履行其功能之前所需要的时间,由于具有处理系统动态行为的能力,测量噪声以及降级过程的随机性。特别是,在本文中,我们最初是采用ESN的集合,以增强单个ESN的性能并提供对影响RUL预测的不确定性的估计。我们使用ESN进行RUL预测的主要方法学新颖性是:i)在动态过程中使用各个ESN记忆容量来汇总ESNs结果; ii)在均值方差估计(MVE)方法内使用附加的ESN估计RUL不确定性。有了这些新颖性,在合成和两个工业数据集上进行的测试中,用于不确定性估计的改进方法优于静态集成和标准MVE方法。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号