首页> 外文期刊>Neurocomputing >Local kernel alignment based multi-view clustering using extreme learning machine
【24h】

Local kernel alignment based multi-view clustering using extreme learning machine

机译:使用极限学习机的基于局部内核对齐的多视图聚类

获取原文
获取原文并翻译 | 示例

摘要

A similarity or dissimilarity measure, such as the Euclidean distance, is crucial to discriminative clustering algorithms. These measures used to calculate pairwise similarities between samples rely on data representations in a feature space. However, discriminative clustering fails if the samples in a feature space are linearly inseparable. This problem can be solved by performing a nonlinear data transformation into a high dimensional feature space, which can increase the probability of the linear separability of the samples within the transformed feature space and simplify the associated data structure. Mercer kernels, which are constructed using such a nonlinear data transformation, have been widely used in clustering tasks. Extreme learning machine (ELM) is a new method that exhibits promising clustering performance owing to its universal approximation capability, easy parameter selection, explicit feature mapping process, and excellent feature representation capability. This study proposes an ELM based multi-view learning approach with different views generated by ELM random feature mapping with respect to different hidden-layer nodes, and exploits the properties of these views. Experiments show that better clustering results can be obtained by combining these views together compared with the corresponding ELM-based single-view clustering methods and the traditional algorithms which are performed in the feature space of the original data. Moreover, local kernel alignment property is widespread in these views. This alignment helps the clustering algorithm focus on closer sample pairs. This study also proposes an ELM based multiple kernel clustering algorithm with local kernel alignment maximization. The proposed algorithm is experimentally demonstrated on 10 single-view benchmark datasets and yields superior clustering performance when compared with the state-of-the-art multi-view clustering methods in recent literatures. Thus, the effectiveness and superiority of maximizing local kernel alignment on those views constructed by the proposed method are verified. (c) 2017 Elsevier B.V. All rights reserved.
机译:相似性或不相似性度量(例如欧几里得距离)对于区分性聚类算法至关重要。这些用于计算样本之间成对相似性的度量取决于特征空间中的数据表示。但是,如果特征空间中的样本线性不可分割,则判别聚类失败。可以通过将非线性数据转换为高维特征空间来解决此问题,这可以增加转换后的特征空间内样本线性可分离性的可能性,并简化关联的数据结构。使用这种非线性数据转换构造的Mercer内核已广泛用于聚类任务。极限学习机(ELM)由于具有通用逼近能力,易于参数选择,显式特征映射过程以及出色的特征表示能力,因此具有很好的聚类性能。这项研究提出了一种基于ELM的多视图学习方法,该方法具有针对不同的隐藏层节点通过ELM随机特征映射生成的不同视图,并利用了这些视图的属性。实验表明,与在原始数据的特征空间中执行的基于ELM的单视图聚类方法和传统算法相比,将这些视图组合在一起可以获得更好的聚类结果。而且,本地内核对齐属性在这些视图中很普遍。这种比对有助于聚类算法专注于更近的样本对。这项研究还提出了一种基于ELM的具有局部内核对齐最大化的多内核聚类算法。与最新文献中最先进的多视图聚类方法相比,该算法在10个单视图基准数据集上进行了实验证明,并具有出色的聚类性能。因此,验证了通过所提出的方法构造的那些视图上最大化局部核对准的有效性和优越性。 (c)2017 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2018年第31期|1099-1111|共13页
  • 作者单位

    Natl Univ Def Technol, Natl Lab Parallel & Distributed Proc, Changsha, Hunan, Peoples R China;

    Natl Univ Def Technol, Natl Lab Parallel & Distributed Proc, Changsha, Hunan, Peoples R China;

    Natl Univ Def Technol, Natl Lab Parallel & Distributed Proc, Changsha, Hunan, Peoples R China;

    Naval Univ Engn, Elect Engn Coll, Wuhan, Hubei, Peoples R China;

    Natl Univ Def Technol, Natl Lab Parallel & Distributed Proc, Changsha, Hunan, Peoples R China;

    Natl Univ Def Technol, Natl Lab Parallel & Distributed Proc, Changsha, Hunan, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Multi-view clustering; Extreme learning machine; Local kernel alignment;

    机译:多视图聚类;极限学习机;局部内核对齐;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号