首页> 外文期刊>Neurocomputing >Learning to rank images for complex queries in concept-based search
【24h】

Learning to rank images for complex queries in concept-based search

机译:在基于概念的搜索中学习为复杂查询的图像排名

获取原文
获取原文并翻译 | 示例

摘要

Concept-based image search is an emerging search paradigm that utilizes a set of concepts as intermediate semantic descriptors of images to bridge the semantic gap. Typically, a user query is rather complex and cannot be well described using a single concept. However, it is less effective to tackle such complex queries by simply aggregating the individual search results for the constituent concepts. In this paper, we propose to introduce the learning to rank techniques to concept-based image search for complex queries. With freely available social tagged images, we first build concept detectors by jointly leveraging the heterogeneous visual features. Then, to formulate the image relevance, we explicitly model the individual weight of each constituent concept in a complex query. The dependence among constituent concepts, as well as the relatedness between query and non-query concepts, are also considered through modeling the pairwise concept correlations in a factorization way. Finally, we train our model to directly optimize the image ranking performance for complex queries under a pairwise learning to rank framework. Extensive experiments on two benchmark datasets well verified the promise of our approach. (C) 2017 Elsevier B.V. All rights reserved.
机译:基于概念的图像搜索是一种新兴的搜索范式,它利用一组概念作为图像的中间语义描述符来弥合语义鸿沟。通常,用户查询非常复杂,无法使用单个概念很好地描述。但是,通过简单地汇总构成概念的单个搜索结果来解决此类复杂查询的效率较低。在本文中,我们建议将学习排序技术引入到基于概念的复杂查询图像搜索中。借助可免费获得的带有社会标签的图像,我们首先通过联合利用异构视觉特征来构建概念检测器。然后,为了表达图像的相关性,我们在复杂的查询中显式地对每个构成概念的权重建模。通过以因数分解的方式对成对概念相关性进行建模,还可以考虑组成概念之间的依赖性以及查询和非查询概念之间的相关性。最后,我们训练模型以在成对学习排名框架下直接优化复杂查询的图像排名性能。在两个基准数据集上的大量实验很好地证明了我们方法的前景。 (C)2017 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2018年第24期|19-28|共10页
  • 作者单位

    Shandong Univ Finance & Econ, Sch Comp Sci & Technol, Jinan 250014, Shandong, Peoples R China;

    Northumbria Univ, Dept Comp & Informat Sci, Newcastle NE2 1XE, England;

    Shandong Univ, Sch Comp Sci & Technol, Jinan 250101, Shandong, Peoples R China;

    Univ Manchester, Alliance Manchester Business Sch, Manchester M1 3BB, Lancs, England;

    Shandong Univ, Sch Comp Sci & Technol, Jinan 250101, Shandong, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Concept-based image search; Complex query; Learning to rank; Factorization machine;

    机译:基于概念的图像搜索;复杂的查询;学习排名;Factorization机器;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号