首页> 外文期刊>Neurocomputing >Adult content detection in videos with convolutional and recurrent neural networks
【24h】

Adult content detection in videos with convolutional and recurrent neural networks

机译:卷积和递归神经网络视频中的成人内容检测

获取原文
获取原文并翻译 | 示例

摘要

AbstractThe amount of adult content on the Internet grows daily. Much of the pornographic content is unconstrained and freely-available for all users, requiring parents to make use of parental control strategies for protecting their children. Current parental control devices depend on human intervention, and hence there is the need of computational approaches for automatically detecting and blocking pornographic content. Toward that goal, this paper proposesACORDE, a novel deep learning architecture that comprises both convolutional neural networks and LSTM recurrent networks for adult content detection in videos. Experiments over the freely-available NPDI dataset show thatACORDEsignificantly outperforms the previous state-of-the-art approaches for this task, decreasing by half the number of false positives and by a third the number of false negatives.
机译: 摘要 互联网上成人内容的数量每天都在增长。许多色情内容都是不受限制的,所有用户均可免费获得,要求父母利用父母控制策略来保护自己的孩子。当前的父母控制设备取决于人为干预,因此需要用于自动检测和阻止色情内容的计算方法。为了实现这一目标,本文提出了 ACORDE ,这是一种新颖的深度学习架构,包括卷积神经网络和LSTM递归网络,用于视频中成人内容的检测。免费提供的NPDI数据集上的实验表明, ACORDE 明显优于以前的最新方法,将误报的数量减少了一半,将误报的数量减少了三分之一误报的数量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号