首页> 外文期刊>Neural processing letters >Non-negative Matrix Factorization with Pairwise Constraints and Graph Laplacian
【24h】

Non-negative Matrix Factorization with Pairwise Constraints and Graph Laplacian

机译:成对约束和图拉普拉斯算子的非负矩阵分解

获取原文
获取原文并翻译 | 示例

摘要

Non-negative matrix factorization (NMF) is a very effective method for high dimensional data analysis, which has been widely used in information retrieval, computer vision, and pattern recognition. NMF aims to find two non-negative matrices whose product approximates the original matrix well. It can capture the underlying structure of data in the low dimensional data space using its parts-based representations. However, NMF is actually an unsupervised method without making use of prior information of data. In this paper, we propose a novel pairwise constrained non-negative matrix factorization with graph Laplacian method, which not only utilizes the local structure of the data by graph Laplacian, but also incorporates pairwise constraints generated among all labeled data into NMF framework. More specifically, we expect that data points which have the same class label will have very similar representations in the low dimensional space as much as possible, while data points with different class labels will have dissimilar representations as much as possible. Consequently, all data points are represented with more discriminating power in the lower dimensional space. We compare our approach with other typical methods and experimental results for image clustering show that this novel algorithm achieves the state-of-the-art performance.
机译:非负矩阵分解(NMF)是一种非常有效的高维数据分析方法,已广泛用于信息检索,计算机视觉和模式识别。 NMF的目的是找到两个非负矩阵,其乘积很好地近似于原始矩阵。它可以使用基于零件的表示形式捕获低维数据空间中数据的基础结构。但是,NMF实际上是一种无监督的方法,无需利用数据的先验信息。在本文中,我们提出了一种新颖的基于图拉普拉斯图的成对约束非负矩阵分解方法,该方法不仅利用图拉普拉斯图的数据局部结构,而且还将在所有标记数据之间生成的成对约束纳入NMF框架。更具体地说,我们期望具有相同类别标签的数据点在低维空间中将具有尽可能相似的表示,而具有不同类别标签的数据点将具有尽可能不同的表示。因此,在较低维空间中,所有数据点都具有更高的识别能力。我们将我们的方法与其他典型方法进行了比较,图像聚类的实验结果表明,这种新颖的算法可以达到最先进的性能。

著录项

  • 来源
    《Neural processing letters》 |2015年第1期|167-185|共19页
  • 作者单位

    Shanghai Jiao Tong Univ, Dept Comp Sci & Engn, MOE Microsoft Lab Intelligent Comp & Intelligent, Shanghai 200240, Peoples R China;

    Shanghai Jiao Tong Univ, Dept Comp Sci & Engn, MOE Microsoft Lab Intelligent Comp & Intelligent, Shanghai 200240, Peoples R China;

    Shanghai Jiao Tong Univ, Dept Comp Sci & Engn, MOE Microsoft Lab Intelligent Comp & Intelligent, Shanghai 200240, Peoples R China;

    Shanghai Jiao Tong Univ, Dept Comp Sci & Engn, MOE Microsoft Lab Intelligent Comp & Intelligent, Shanghai 200240, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Non-negative matrix factorization; Semi-supervised learning; Pairwise constraints; Graph Laplacian; Clustering;

    机译:非负矩阵分解;半监督学习;成对约束;图拉普拉斯算子;聚类;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号