首页> 外文期刊>Neural processing letters >Coordinate Descent Algorithm for Ramp Loss Linear Programming Support Vector Machines
【24h】

Coordinate Descent Algorithm for Ramp Loss Linear Programming Support Vector Machines

机译:匝道损耗线性规划支持向量机的坐标下降算法

获取原文
获取原文并翻译 | 示例

摘要

In order to control the effects of outliers in training data and get sparse results, Huang et al. (J Mach Learn Res 15:2185-2211, 2014) proposed the ramp loss linear programming support vector machine. This combination of regularization and ramp loss does not only lead to the sparsity of parameters in decision functions, but also limits the effects of outliers with a maximal penalty. However, due to its non-convexity, the computational cost to achieve a satisfying solution is often expensive. In this paper, we propose a modified coordinate descent algorithm, which deals with a series of one-variable piecewise linear subproblems. Considering that the obtained subproblems are DC programming problems, we linearize the concave part of the objective functions and solve the obtained convex problems. To test the performances of the proposed algorithm, numerical experiments have been carried out and analysed on benchmark data sets. To enhance the sparsity and robustness, the experiments are initialized from C-SVM solutions. The results confirm its excellent performances in classification accuracy, robustness and efficiency in computation.
机译:为了控制离群值在训练数据中的影响并获得稀疏结果,Huang等人。 (J Mach Learn Res 15:2185-2211,2014)提出了斜坡损耗线性规划支持向量机。正则化和斜坡损失的这种结合不仅导致决策函数中参数的稀疏性,而且以最大的代价限制了异常值的影响。然而,由于其不凸性,获得令人满意的解决方案的计算成本通常很昂贵。在本文中,我们提出了一种改进的坐标下降算法,该算法处理一系列的单变量分段线性子问题。考虑到获得的子问题是DC规划问题,我们将目标函数的凹部分线性化并解决了凸问题。为了测试该算法的性能,已经进行了数值实验并在基准数据集上进行了分析。为了提高稀疏性和鲁棒性,从C-SVM解决方案初始化了实验。结果证实了其在分类准确性,鲁棒性和计算效率方面的优异性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号