首页> 外文期刊>Neural processing letters >Face Recognition Using A Low Rank Representation Based Projections Method
【24h】

Face Recognition Using A Low Rank Representation Based Projections Method

机译:基于低秩表示的投影方法进行人脸识别

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a low rank representation based projections (LRRP) method is presented for face recognition. In LRRP, low rank representation is used to construct a nuclear graph to characterize the local compactness information by designing the local scatter matrix like SPP; the total separability information is characterized by the total scatter like PCA. LRRP seeks the projection matrix simultaneously maximizing the total separability and the local compactness. Experimental results on FERET, AR, Yale face databases and the PolyU finger-knuckle-print database demonstrate that LRRP works well for face recognition.
机译:本文提出了一种基于低秩表示的投影(LRRP)方法用于人脸识别。在LRRP中,低秩表示用于通过设计像SPP这样的局部散布矩阵来构造核图,以表征局部紧实度信息。总可分离性信息的特征在于总分散度,如PCA。 LRRP寻求投影矩阵,同时最大化总可分离性和局部紧凑性。在FERET,AR,耶鲁人脸数据库和PolyU指关节指纹数据库上的实验结果表明,LRRP可以很好地用于人脸识别。

著录项

  • 来源
    《Neural processing letters》 |2016年第3期|823-835|共13页
  • 作者单位

    Southeast Univ, Sch Automat, Nanjing 210096, Jiangsu, Peoples R China|Southeast Univ, Minist Educ, Key Lab Measurement & Control Complex Syst Engn, Nanjing 210096, Jiangsu, Peoples R China;

    Southeast Univ, Sch Automat, Nanjing 210096, Jiangsu, Peoples R China|Southeast Univ, Minist Educ, Key Lab Measurement & Control Complex Syst Engn, Nanjing 210096, Jiangsu, Peoples R China|Southeast Univ, Minist Educ, Key Lab Child Dev & Learning Sci, Nanjing 210096, Jiangsu, Peoples R China;

    Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 611731, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Sparse representation; Low rank representation; Feature extraction; Face recognition;

    机译:稀疏表示;低秩表示;特征提取;人脸识别;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号