首页> 外文期刊>Neural processing letters >Finite-Time and Fixed-Time Stabilization Control of Delayed Memristive Neural Networks: Robust Analysis Technique
【24h】

Finite-Time and Fixed-Time Stabilization Control of Delayed Memristive Neural Networks: Robust Analysis Technique

机译:延迟忆阻神经网络的有限时间和固定时间稳定控制:鲁棒分析技术

获取原文
获取原文并翻译 | 示例

摘要

This paper provides finite-time and fixed-time stabilization control strategy for delayed memristive neural networks. Considering that the parameters in the memristive model are state-dependent, which may contain unexpected parameter mismatch when different initial conditions are chosen, in this case, the traditional robust control and analytical methods cannot be carried out directly. To overcome this problem, a brand new robust control strategy was designed under the framework of Filippov solution. Based on the designed discontinuous controller, numerically testable conditions are proposed to stabilize the states of the target system in finite time and fixed time. Moreover, the upper bound of the settling time for stabilization is estimated. Finally, numerical examples are exhibited to explain our findings.
机译:本文为时滞忆阻神经网络提供了有限时间和固定时间的稳定控制策略。考虑到忆阻模型中的参数是状态相关的,当选择不同的初始条件时可能包含意想不到的参数不匹配,在这种情况下,传统的鲁棒控制和分析方法无法直接执行。为了克服这个问题,在Filippov解决方案的框架下设计了一种全新的鲁棒控制策略。基于设计的不连续控制器,提出了可在数值上测试的条件,以在有限的时间和固定的时间内稳定目标系统的状态。此外,估计稳定时间的稳定时间的上限。最后,通过数值例子来说明我们的发现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号