首页> 外文期刊>Neural processing letters >Content-Based Image Retrieval Using Iterative Search
【24h】

Content-Based Image Retrieval Using Iterative Search

机译:使用迭代搜索的基于内容的图像检索

获取原文
获取原文并翻译 | 示例

摘要

The aim of Content-based Image Retrieval (CBIR) is to find a set of images that best match the query based on visual features. Most existing CBIR systems find similar images in low level features, while Text-based Image Retrieval (TBIR) systems find images with relevant tags regardless of contents in the images. Generally, people are more interested in images with similarity both in contours and high-level concepts. Therefore, we propose a new strategy called Iterative Search to meet this requirement. It mines knowledge from the similar images of original queries, in order to compensate for the missing information in feature extraction process. To evaluate the performance of Iterative Search approach, we apply this method to four different CBIR systems (HOF Zhou et al. in ACM international conference on multimedia, 2012; Zhou and Zhang in Neural information processing—international conference, ICONIP 2011, Shanghai, 2011, HOG Dalal and Triggs in IEEE computer society conference on computer vision pattern recognition, 2005, GIST Oliva and Torralba in Int J Comput Vision 42:145–175, 2001 and CNN Krizhevsky et al. in Adv Neural Inf Process Syst 25:2012, 2012) in our experiments. The results show that Iterative Search improves the performance of original CBIR features by about $$20%$$ 20 % on both the Oxford Buildings dataset and the Object Sketches dataset. Meanwhile, it is not restricted to any particular visual features.
机译:基于内容的图像检索(CBIR)的目的是基于视觉特征找到最匹配查询的一组图像。现有的大多数CBIR系统在低级功能中都可以找到相似的图像,而基于文本的图像检索(TBIR)系统可以在不考虑图像内容的情况下找到带有相关标签的图像。通常,人们对轮廓和高级概念相似的图像更感兴趣。因此,我们提出了一种称为迭代搜索的新策略来满足这一要求。它从原始查询的相似图像中挖掘知识,以补偿特征提取过程中丢失的信息。为了评估迭代搜索方法的性能,我们将此方法应用于四种不同的CBIR系统(HOF Zhou等人在ACM国际多媒体会议上,2012; Zhou和Zhang在神经信息处理国际会议上,ICONIP 2011,上海,2011)。 ,HOG Dalal和Triggs在2005年IEEE计算机学会计算机视觉模式识别会议上,GIST Oliva和Torralba在Int J Comput Vision 42:145-175、2001和CNN Krizhevsky等人在Adv Neural Inf Process Syst 25:2012中发表了演讲, 2012年)。结果表明,在牛津建筑数据集和对象草图数据集上,迭代搜索将原始CBIR功能的性能提高了约$ 20%$$ 20%。同时,它不限于任何特定的视觉特征。

著录项

  • 来源
    《Neural processing letters》 |2018年第3期|907-919|共13页
  • 作者

    Zhengzhong Zhou; Liqing Zhang;

  • 作者单位

    Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering, Department of Computer Science and Engineering, Shanghai Jiao Tong University;

    Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering, Department of Computer Science and Engineering, Shanghai Jiao Tong University;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    CBIR; Iterative search; Image semantics; Retrieval optimization;

    机译:CBIR;迭代搜索;图像语义;检索优化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号