首页> 外文期刊>Neural processing letters >A Novel Model-Based Approach for Medical Image Segmentation Using Spatially Constrained Inverted Dirichlet Mixture Models
【24h】

A Novel Model-Based Approach for Medical Image Segmentation Using Spatially Constrained Inverted Dirichlet Mixture Models

机译:基于空间约束的倒狄利克雷混合模型的医学图像分割的基于模型的新方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present a novel statistical approach to medical image segmentation. This approach is based on finite mixture models with spatial smoothness constrains. The main advantages of the proposed approach can be summarized as follows. Firstly, the proposed model is based on inverted Dirichlet mixture models, which have demonstrated better performance in modeling positive data (e.g., images) than Gaussian mixture models. Secondly, we integrate spatial relationships between pixels with the inverted Dirichlet mixture model, which makes it more robust against noise and image contrast levels. Finally, we develop a variational Bayes method to learn the proposed model, such that the model parameters and model complexity (i.e., the number of mixture components) can be estimated simultaneously in a unified framework. The performance of the proposed approach in medical image segmentation is compared with some state-of-the-art segmentation approaches through various numerical experiments on both simulated and real medical images.
机译:在本文中,我们提出了一种用于医学图像分割的新颖统计方法。该方法基于具有空间平滑度约束的有限混合模型。所提出的方法的主要优点可以总结如下。首先,所提出的模型是基于反向Dirichlet混合模型,与高斯混合模型相比,该模型在对正向数据(例如图像)进行建模时表现出更好的性能。其次,我们将像素之间的空间关系与倒置的Dirichlet混合模型整合在一起,从而使它在抵御噪声和图像对比度水平方面更加强大。最后,我们开发了一种变分贝叶斯方法来学习所提出的模型,以便可以在统一框架中同时估计模型参数和模型复杂性(即混合成分的数量)。通过对模拟和真实医学图像进行各种数值实验,将所提出的方法在医学图像分割中的性能与某些最新的分割方法进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号