首页> 外文期刊>Neural processing letters >Tensor Locality Preserving Sparse Projection for Image Feature Extraction
【24h】

Tensor Locality Preserving Sparse Projection for Image Feature Extraction

机译:张量局部保留稀疏投影用于图像特征提取

获取原文
获取原文并翻译 | 示例

摘要

Manifold learning is a hot topic in feature extraction, wherein high-dimensional data is represented in a potential low-dimensional manifold. In this paper, a novel manifold-learning method called tensor locality preserving sparse projection (TLPSP) is proposed, which extends the locality preserving criterion to include constraints for the tensor and concise sparse case. In order to retain the structural information of images and avoid the "curse of dimensionality" caused by vectorization, the images are treated as second-order tensors. Furthermore, the sparse extension allows the transform matrix to ably perform feature selection. Although there are sparse subspace learning methods that combine the sparse constraint and the equivalent regression version of the generalized eigenvalue problem, the objects are vectors. Direct utilization of that regression version leads to a high-dimensional dictionary in the matrix-based case. Hence, we substitute the regression form for a concise term and prove their equivalence in detail. By introducing the L1 norm penalty to the modified regression problem under the locality preserving criterion, the sparse projection matrices are obtained for feature extraction. Comparison experiments on supervised and unsupervised tasks demonstrate that TLPSP improves the recognition results and clustering performance.
机译:流形学习是特征提取中的热门话题,其中高维数据以潜在的低维流形表示。本文提出了一种新的流形学习方法,称为张量局部性稀疏投影(TLPSP),它扩展了局部性保存准则,包括对张量的约束和简洁的稀疏情况。为了保留图像的结构信息并避免矢量化引起的“维数诅咒”,将图像视为二阶张量。此外,稀疏扩展允许变换矩阵可靠地执行特征选择。尽管存在将稀疏约束和广义特征值问题的等效回归版本组合在一起的稀疏子空间学习方法,但对象是矢量。在基于矩阵的情况下,直接使用该回归版本会生成高维字典。因此,我们将回归形式替换为一个简洁的术语,并详细证明它们的等效性。通过在保持局部性的准则下将L1范数罚分引入到改进的回归问题中,可以获得稀疏投影矩阵用于特征提取。通过对有监督和无监督任务的比较实验,表明TLPSP可以提高识别结果和聚类性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号