首页> 外文期刊>Neural processing letters >A Survey of Encoding Techniques for Signal Processing in Spiking Neural Networks
【24h】

A Survey of Encoding Techniques for Signal Processing in Spiking Neural Networks

机译:尖峰神经网络中信号处理编码技术的调查

获取原文
获取原文并翻译 | 示例

摘要

Biologically inspired spiking neural networks are increasingly popular in the field of artificial intelligence due to their ability to solve complex problems while being power efficient. They do so by leveraging the timing of discrete spikes as main information carrier. Though, industrial applications are still lacking, partially because the question of how to encode incoming data into discrete spike events cannot be uniformly answered. In this paper, we summarise the signal encoding schemes presented in the literature and propose a uniform nomenclature to prevent the vague usage of ambiguous definitions. Therefore we survey both, the theoretical foundations as well as applications of the encoding schemes. This work provides a foundation in spiking signal encoding and gives an overview over different application-oriented implementations which utilise the schemes.
机译:由于能够在功率效率的同时解决复杂问题的能力,生物学启发的尖峰神经网络在人工智能领域越来越受欢迎。 它们通过利用离散尖峰作为主要信息载体的时机来这样做。 虽然,工业应用仍然缺乏,部分原因是如何将传入数据编码为离散尖峰事件的问题不能统一地回答。 在本文中,我们总结了文献中呈现的信号编码方案,并提出了一种统一的命名法,以防止模糊使用模糊定义。 因此,我们调查了编码方案的理论基础以及应用程序。 这项工作为Spiking信号编码提供了基础,并概述了利用方案的不同应用导向的实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号