首页> 外文期刊>Neural processing letters >Meta-Heuristic Algorithms-Tuned Elman vs. Jordan Recurrent Neural Networks for Modeling of Electron Beam Welding Process
【24h】

Meta-Heuristic Algorithms-Tuned Elman vs. Jordan Recurrent Neural Networks for Modeling of Electron Beam Welding Process

机译:元 - 启发式算法调整ELMAN与JORDAN复制神经网络用于电子束焊接过程的建模

获取原文
获取原文并翻译 | 示例

摘要

A boost in the preference of high energy beam, such as electron beam, laser beam etc. has led to the requirement of its automation through accurate input-output modelling. Modeling of electron beam welding is conducted in the present study through Elman and Jordan recurrent neural networks (RNNs), both having a single feed-back loop, to meet the said requirement. The RNNs are trained using some nature-inspired optimization tools, namely cuckoo search, firefly, flower pollination, and crow search utilizing input-output welding data, obtained from a computational fluid dynamics-based heat transfer and fluid flow welding model. RNN predictions are validated through real experiments. Thus, the effect of change in the position of the feed-back loop on the accuracy of prediction of RNNs is investigated. In addition, a few popular statistical tests have been used to evaluate the performances of the RNNs tuned by various optimization algorithms, where flower pollination-tuned Jordan RNN is observed to yield the best results.
机译:通过精确的输入输出建模,在高能束的优选诸如电子束,激光束等的优选中的升高导致了其自动化的要求。电子束焊接的建模在本研究中通过Elman和Jordan经常性神经网络(RNN)进行,两者都具有单个反馈环,以满足所述要求。 RNN使用来自基于计算流体动力学的传热和流体流动焊接模型获得的一些自然灵感的优化工具,即杜鹃搜索,萤火虫,花授粉和乌鸦搜索,以及利用输入输出焊接数据。通过真实实验验证RNN预测。因此,研究了对馈回环的位置变化对RNN的预测精度的影响。此外,已经使用了一些流行的统计测试来评估各种优化算法调整的RNN的性能,其中观察到花授粉调整的jordan rnn来产生最佳结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号