首页> 外文期刊>Neural processing letters >Delay-Dependent Criteria for Global Exponential Stability of Time-Varying Delayed Fuzzy Inertial Neural Networks
【24h】

Delay-Dependent Criteria for Global Exponential Stability of Time-Varying Delayed Fuzzy Inertial Neural Networks

机译:延迟依赖性标准,用于时变延迟模糊惯性神经网络的全局指数稳定性

获取原文
获取原文并翻译 | 示例

摘要

This paper is mainly concerned with global exponential stability of time-varying delayed fuzzy inertial neural networks. Different from previous approaches of variable transformation, we use non-reduced order method. Different from previous non-reduced order method used to investigate the inertial neural networks without time-varying delays, we take the time-varying delayed effects into account. By constructing a modified delay-dependent Lyapunov functional and inequality technique, delay-dependent criteria stated with simple algebraic inequalities are given in order to ensure the global exponential stability for the addressed delayed fuzzy inertial neural network model. The approach applied can provide a new method to study the fuzzy inertial neural networks with time delays via non-reduced order method. Some previous works in the literature are extend and complement. Finally, numerical examples with simulations are presented to make comparisons between the system with delays and without delays, and further demonstrate the validity and originality of the proposed approach.
机译:本文主要涉及时变延迟模糊惯性神经网络的全球指数稳定性。不同于以前的可变变换方法,我们使用非减少的顺序方法。与以往的非减少订单方法不同,用于研究惯性神经网络而不延迟,我们考虑时变化延迟效果。通过构建修改的延迟依赖的Lyapunov功能和不等式技术,给出了具有简单代数不等式的延迟相关标准,以确保寻址延迟模糊惯性神经网络模型的全球指数稳定性。所应用的方法可以通过非减少订单方法研究模糊惯性神经网络的新方法。文献中的一些先前作品延伸和补充。最后,提出了具有仿真的数值示例,以使系统与延迟和没有延迟的系统之间的比较,并进一步证明了所提出的方法的有效性和原创性。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号