首页> 外文期刊>Neural processing letters >Ordinal Multi-class Architecture for Predicting Wind Power Ramp Events Based on Reservoir Computing
【24h】

Ordinal Multi-class Architecture for Predicting Wind Power Ramp Events Based on Reservoir Computing

机译:基于储层计算的风电斜坡事件预测序数多级架构

获取原文
获取原文并翻译 | 示例

摘要

Wind power ramp events (WPREs) are strong increases or decreases of wind speed in a short period of time. Predicting WPREs in wind farms is of vital importance given that they can produce damages in the turbines, and, in any case, they suddenly affect the wind farm production. In contrast to previous binary definitions of the prediction problem (ramp vs non-ramp), a three-class prediction model is used in this paper, proposing a novel discretization function, able to detect the nature of WPREs: negative ramp, non-ramp and positive ramp events. Moreover, the natural order of these labels is exploited to obtain better results in the prediction of these events. The independent variables used for prediction include, in this case, past wind speed values and meteorological data obtained from physical models (reanalysis data). Reanalysis will be also used for recovering missing data from the measuring stations in the wind farm. The proposed prediction methodology is based on Reservoir Computing and an over-sampling process for alleviating the high degree of unbalance in the dataset (non-ramp events are much more frequent than ramps). Three elements are combined in the prediction method: a recurrent neural network layer, a nonlinear kernel mapping and an ordinal logistic regression,to exploit the information provided by the order of the classes). Preprocessing is based on a variation of the standard synthetic minority over-sampling technique, which is applied to the reservoir activations (since the direct application over the input variables would damage its temporal structure). The performance of the method is analysed by comparing it against other state-of-the-art classifiers, such as Support Vector Machines, nominal logistic regression, an autoregressive ordinal neural network, or the use of leaky integrator neurons instead of the standard sigmoidal units. From the results obtained, the benefits of the kernel mapping and the ordinal model are clear, and, in general, the performance obtained with the Reservoir Computing approach is shown to be very robust in the detection of ramps.
机译:风电斜坡事件(WPRES)在短时间内强劲增加或减少风速。在风电场预测WPRES至关重要,因为它们可以在涡轮机中产生损坏,并且在任何情况下,它们突然影响了风电场生产。与预测问题的先前二进制定义相比(RAMP VS非斜坡),本文使用了三类预测模型,提出了一种新的离散化功能,能够检测WPRES的性质:负斜坡,非斜坡和积极的斜坡事件。此外,利用这些标签的自然顺序,以获得更好的结果在预测这些事件中。在这种情况下,用于预测的独立变量包括从物理模型(Reanalysis数据)获得的过去的风速值和气象数据。 Reanalysis也将用于从风电场的测量站中恢复缺失数据。所提出的预测方法基于储层计算和用于减轻数据集中的高度不平衡的过采样过程(非斜坡事件比斜坡更频繁)。三个元素在预测方法中组合:经常性神经网络层,非线性内核映射和序数逻辑回归,以利用所提供类的顺序提供的信息)。预处理基于标准合成少数群体过采样技术的变化,该技术应用于储层激活(因为输入变量上的直接应用会损坏其时间结构)。通过将其与其他最先进的分类器进行比较来分析该方法的性能,例如支持向量机,标称逻辑回归,自回归序数神经网络,或使用泄漏的集成器神经元而不是标准的乙状单元。从获得的结果中,内核映射和序数模型的益处是清晰的,并且通常,随着储存器计算方法获得的性能被认为在斜坡的检测方面是非常稳健的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号