首页> 外文期刊>Neural processing letters >A Human Auditory Perception Loss Function Using Modified Bark Spectral Distortion for Speech Enhancement
【24h】

A Human Auditory Perception Loss Function Using Modified Bark Spectral Distortion for Speech Enhancement

机译:使用改进的Bark光谱失真进行语音增强的人类听觉感知损失功能

获取原文
获取原文并翻译 | 示例

摘要

Human listeners often have difficulties understanding speech in the presence of hackground noise in daily speech communication environments. Recently, deep neural network (DNN)-based techniques have been successfully applied to speech enhancement and achieved significant improvements over the conventional approaches. However, existing DNN-based methods usually minimize the log-power spectral-based or the masking-based mean squared error (MSE) between the enhanced output and the training target (e.g., the ideal ratio mask (IRM) of the clean speech), which is not closely related to human auditory perception. In this letter, a modified bark spectral distortion loss function, which can be considered as an auditory perception-based MSE, is proposed to replace the conventional MSE in DNN-based speech enhancement approaches to further improve the objective perceptual quality. Experimental results reveal that the proposed method can obtain improved speech enhancement performance, especially in terms of objective perceptual quality in all experimental settings when compared with the DNN-based methods using the conventional MSE criterion.
机译:人类的听众经常在日常语音通信环境中遇到喧嚣噪声存在的困难。最近,基于深度神经网络(DNN)的技术已经成功地应用于语音增强,并通过传统方法实现了显着的改进。然而,基于DNN的基于DNN的方法通常最小化基于的基于日志功率谱或基于掩蔽的平均平方误差(MSE)(例如,清洁语音的理想比率掩码(IRM)) ,与人类听觉感知密切相关。在这封信中,提出了一种可以被视为基于感知的MSE的改进的BARK光谱失真丢失函数,以取代基于DNN的语音增强方法中的传统MSE,以进一步提高目标感知质量。实验结果表明,该方法可以获得改进的语音增强性能,特别是在所有实验设置中的客观感知质量与使用传统的MSE标准相比的所有实验设置。

著录项

  • 来源
    《Neural processing letters》 |2020年第3期|2945-2957|共13页
  • 作者单位

    School of Communication and Information Engineering Chongqing University of Posts and Telecommunications Chongqing China;

    School of Communication and Information Engineering Chongqing University of Posts and Telecommunications Chongqing China;

    School of Communication and Information Engineering Chongqing University of Posts and Telecommunications Chongqing China;

    Department of Information Engineering Ⅰ-Shou University Kaohsiung 84001 Taiwan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Speech enhancement; Loss function; MSE; MBSD; DNN;

    机译:语音增强;损失功能;MSE;MBSD;DNN.;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号