首页> 外文期刊>Neural processing letters >Surface Electromyography-Based Daily Activity Recognition Using Wavelet Coherence Coefficient and Support Vector Machine
【24h】

Surface Electromyography-Based Daily Activity Recognition Using Wavelet Coherence Coefficient and Support Vector Machine

机译:基于表面电学的日常活动识别使用小波相干系数和支持向量机

获取原文
获取原文并翻译 | 示例

摘要

Daily activity monitoring plays an important role among frail or elderly people and has caught attention. Surface electromyography (sEMG) can extract the feature of activity, but it is not stable because of electrode displacement, postural changes, and individual-dependent features, such as the condition of muscles, subcutaneous fat, and skin surface. To effectively extract the feature of sEMG signal, we proposed a new method of feature extraction based on coherence analysis. The sEMG signals were recorded from gastrocnemius, tibialis anterior, rectus femoris, and semitendinosus. After de-noising, sEMG signals were decomposed into 32-scale by wavelet transformation, and their wavelet coefficients were employed to calculate wavelet coherence coefficients (WCC). We employed T test to find out if the coherence between sEMG signals was statistically different among six activities. The 32nd scale WCC of RF-ST and ST-TA as eigenvector was entered into the support vector machine (SVM). The six activities, namely, standing, walking, running, stair-ascending, stair-descending, and falling, were successfully identified by the WCC feature with the SVM classifier.
机译:日常活动监测在虚空或老年人之间发挥着重要作用,并引起了关注。表面肌电图(SEMG)可以提取活性的特征,但由于电极位移,姿势变化和个体依赖性特征,诸如肌肉,皮下脂肪和皮肤表面的条件是不稳定的。为了有效提取SEMG信号的特征,我们提出了一种基于相干性分析的特征提取方法。 SEMG信号从胃肠脑,胫骨前,直肠股骨和半念珠菌中记录。在去噪之后,通过小波变换将SEMG信号分解为32尺寸,并且其小波系数用于计算小波相干系数(WCC)。我们使用T检验,了解SEMG信号之间的一致性是否在六项活动中具有统计数据。 RF-ST和ST-TA作为特征向量的32nd刻度WCC进入支持向量机(SVM)。通过SVM分类器成功地通过WCC功能成功地识别了六项活动,即站立,行走,运行,楼梯上升,楼梯下降和下降。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号