首页> 外文期刊>Neural processing letters >Multi-object Tracking by Joint Detection and Identification Learning
【24h】

Multi-object Tracking by Joint Detection and Identification Learning

机译:通过联合检测和识别学习多对象跟踪

获取原文
获取原文并翻译 | 示例

摘要

Multi-object tracking (MOT) is closely related to video-based object detection and target re-identification. In recent years, with the representation power brought by deep learning, the majority of state-of-the-art methods on object detection and re-identification are based on deep neural networks. However, it is still an open problem to improve the performance of MOT in real challenging scenes. Specifically, recent MOT algorithms have not been optimized together with object detection, which hinders the performance of tracking. Inspired by recent progress on object detection and recognition, we propose a MOT method via joint learning on detection and identification by using existing MOT datasets without external training data. We further introduce a feature enhancement module based on the ConvGRU structure, which helps to deal with deterioration of image quality in video object detection and re-identification, such as motion blur and camera losing focus. Experimental results show that the proposed method achieves competitive performance compared with state-of-the-art methods in video-based object detection, cross-dataset person re-identification, and multi-object tracking.
机译:多目标跟踪(MOT)与基于视频的对象检测和目标重新识别密切相关。近年来,随着深度学习带来的代表权力,对象检测和重新识别的大部分最先进的方法基于深度神经网络。然而,在真正挑战场景中提高MOT的性能仍然是一个开放的问题。具体地,最近的MOT算法没有与对象检测一起优化,阻碍了跟踪性能。灵感来自最近对象检测和识别的进展,我们通过使用现有的MOT数据集没有外部训练数据,通过联合学习来提出MOT方法。我们进一步介绍了基于CONCRGRU结构的特征增强模块,有助于处理视频对象检测和重新识别中图像质量的恶化,例如运动模糊和相机丢失焦点。实验结果表明,该方法与基于视频的对象检测,跨数据集人重新识别和多对象跟踪相比,与最先进的方法相比,实现了竞争性能。

著录项

  • 来源
    《Neural processing letters》 |2019年第1期|283-296|共14页
  • 作者单位

    Sun Yat Sen Univ Sch Data & Comp Sci 135 West Xingang Rd Guangzhou 510275 Guangdong Peoples R China|Minist Educ Key Lab Machine Intelligence & Adv Comp 135 West Xingang Rd Guangzhou 510275 Guangdong Peoples R China;

    Sun Yat Sen Univ Sch Data & Comp Sci 135 West Xingang Rd Guangzhou 510275 Guangdong Peoples R China|Minist Educ Key Lab Machine Intelligence & Adv Comp 135 West Xingang Rd Guangzhou 510275 Guangdong Peoples R China;

    Sun Yat Sen Univ Sch Data & Comp Sci 135 West Xingang Rd Guangzhou 510275 Guangdong Peoples R China|Minist Educ Key Lab Machine Intelligence & Adv Comp 135 West Xingang Rd Guangzhou 510275 Guangdong Peoples R China;

    Sun Yat Sen Univ Sch Data & Comp Sci 135 West Xingang Rd Guangzhou 510275 Guangdong Peoples R China|Minist Educ Key Lab Machine Intelligence & Adv Comp 135 West Xingang Rd Guangzhou 510275 Guangdong Peoples R China;

    Sun Yat Sen Univ Sch Data & Comp Sci 135 West Xingang Rd Guangzhou 510275 Guangdong Peoples R China|Minist Educ Key Lab Machine Intelligence & Adv Comp 135 West Xingang Rd Guangzhou 510275 Guangdong Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Multi-object tracking; Multi-task learning; Object detection;

    机译:多目标跟踪;多任务学习;对象检测;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号