首页> 外文期刊>Neural processing letters >Feature Extraction and Classification of Hand Movements Surface Electromyogram Signals Based on Multi-method Integration
【24h】

Feature Extraction and Classification of Hand Movements Surface Electromyogram Signals Based on Multi-method Integration

机译:基于多方法集成的手动表面电灰度信号特征提取和分类

获取原文
获取原文并翻译 | 示例

摘要

On the basis of analysing the characteristics of hand movement surface electrocardiogram electromyogram (sEMG) signals, we propose a feature extraction and classification method for hand movement sEMG signals based on a multi-method integration combining the wavelet, fractal and statistics methods. To start, the hand movement sEMG signals are de-noised by using the wavelet transform, the de-noised and reconstructed signals are decomposed, and the average high frequency coefficients in each scale space are calculated to constitute the feature vectors as the first part of the hand movement sEMG signals classification features. Next, according to the characteristics of hand movement sEMG signals and the classification needs, we analyse the multi-fractal spectrum of the de-noised and reconstructed signals at multiple scales and extract the relevant parameters of multi-fractal spectrum as the second part of the hand movement sEMG signals classification features. Then, according to the characteristics of hand movement sEMG signals, we extract the relevant statistical characteristics of sEMG signals as the third part of hand movement sEMG signals classification features. According to the extracted features, we use the Least Square Support Vector Machine and the Backpropagation neural network as classifiers to individually classify and combine the characteristics of hand movement sEMG signals and the experimental results. The final classification features are identified to accomplish the classification of hand movement sEMG signals. Finally, the advantages of the proposed method are illustrated by comparative analysis from multiple perspectives.
机译:在分析手动表面心电图电磁图(SEMG)信号的特性的基础上,提出了一种基于小波,分形和统计方法的多方法集成的手动运动SEMG信号的特征提取和分类方法。为了开始,通过使用小波变换来解析手动运动SEMG信号,将去噪和重建信号进行分解,并且计算每个刻度空间中的平均高频系数以构成特征向量作为第一部分手动移动SEMG信号分类功能。接下来,根据手动SEMG信号和分类需求的特点,我们分析了多个尺度的去噪和重建信号的多分形光谱,并提取了作为第二部分的多分形光谱的相关参数手动移动SEMG信号分类功能。然后,根据手动运动SEMG信号的特性,我们提取SEMG信号的相关统计特性作为手动运动SEMG信号分类功能的第三部分。根据提取的特征,我们使用最小二乘支持向量机和背部化神经网络作为分类器来单独分类,并结合手动运动SEMG信号的特性和实验结果。识别最终分类特征以完成手动运动SEMG信号的分类。最后,通过从多个视角的比较分析说明了所提出的方法的优点。

著录项

  • 来源
    《Neural processing letters》 |2019年第3期|1179-1188|共10页
  • 作者

    Ge Li; Ge Li-Juan; Hu Jing;

  • 作者单位

    Harbin Univ Commerce Comp & Informat Engn Inst 1 Xuehai Rd Harbin 150028 Heilongjiang Peoples R China;

    Harbin Univ Commerce Comp & Informat Engn Inst 1 Xuehai Rd Harbin 150028 Heilongjiang Peoples R China;

    Harbin Univ Commerce Comp & Informat Engn Inst 1 Xuehai Rd Harbin 150028 Heilongjiang Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Hand movement sEMG signals; Classification; Feature extraction; Integration;

    机译:手动运动SEMG信号;分类;特征提取;集成;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号