首页> 外文期刊>Neural processing letters >Enhanced Bird Detection from Low-Resolution Aerial Image Using Deep Neural Networks
【24h】

Enhanced Bird Detection from Low-Resolution Aerial Image Using Deep Neural Networks

机译:使用深神经网络从低分辨率航天图像中提高鸟类检测

获取原文
获取原文并翻译 | 示例

摘要

Bird detection in LR images is essential for the applications of unmanned aerial vehicles. It is still a challenging task because traditional discriminative features in high-resolution (HR) usually disappear in low-resolution (LR) images. Although recent advances in single image super-resolution (SISR) and object detection algorithms have offered unprecedented potential for computer-automated reconstructing LR images and detecting various objects, these algorithms are mainly evaluated using synthetic datasets. It is unclear how these algorithms would perform on bird images acquired in the wild and how we could gauge the progress in the real-time bird detection. This paper presents a novel bird detection framework in LR aerial images using deep neural networks (DNN). We collect a dataset named BIRD-50 and a public dataset named CUB-200 of real bird images with different scale low-resolutions. Using these datasets, we introduce a novel DNN based framework for bird detection in reconstructed HR images, which exploits the mapping function from LR to HR aerial image and detects the birds by the state-of-the-art object feature extraction and localization methods. By systematically analyzing the influence of the resolution reduction on the bird detection, the experimental results indicate that our approach has produced significantly improved detection precision for bird detection by the inclusion of SISR algorithms.
机译:LR图像中的鸟类检测对于无人驾驶飞行器的应用至关重要。它仍然是一个具有挑战性的任务,因为高分辨率(HR)中的传统鉴别特征通常在低分辨率(LR)图像中消失。虽然单个图像超分辨率(SISR)和对象检测算法的最近进步已经为计算机自动重建LR图像提供了前所未有的潜力并检测各种对象,这些算法主要使用合成数据集进行评估。目前尚不清楚这些算法如何在野外获取的鸟类图像上执行,以及我们如何衡量实时鸟类检测中的进展。本文介绍了使用深神经网络(DNN)的LR航空图像中的新型鸟检测框架。我们收集一个名为Birt-50的数据集和名为Cub-200的公共数据集,其具有不同刻度的低分辨率的真正的鸟类图像。使用这些数据集,我们在重建的HR图像中引入了基于DNN的鸟类检测框架,其利用LR到HR航天图像的映射函数,并通过最先进的对象特征提取和定位方法检测鸟类。通过系统地分析分辨率降低对鸟类检测的影响,实验结果表明,我们的方法通过包含SISR算法,对鸟类检测进行了显着改善的检测精度。

著录项

  • 来源
    《Neural processing letters》 |2019年第3期|1021-1039|共19页
  • 作者单位

    China Univ Min & Technol Dept Comp Sci Beijing Peoples R China;

    Beihang Univ Sch Automat Sci & Elect Engn Beijing Peoples R China|State Key Lab Satellite Nav Syst & Equipment Tech Shijiazhuang Hebei Peoples R China|Shenzhen Acad Aerosp Technol Shenzhen Peoples R China;

    Beihang Univ Sch Automat Sci & Elect Engn Beijing Peoples R China;

    China Acad Launch Vehicle Technol R&D Ctr Beijing Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Low-resolution; Aerial image; Bird detection; Super-resolution; Deep neural networks;

    机译:低分辨率;空中图像;鸟检测;超级分辨率;深神经网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号