首页> 外文期刊>Neural processing letters >Approximate Solutions of Initial Value Problems for Ordinary Differential Equations Using Radial Basis Function Networks
【24h】

Approximate Solutions of Initial Value Problems for Ordinary Differential Equations Using Radial Basis Function Networks

机译:基于径向基函数网络的常微分方程初值问题的近似解

获取原文
获取原文并翻译 | 示例

摘要

We present a numerical approach for the approximate solutions of first order initial value problems (IVP) by using unsupervised radial basis function networks. The proposed unsupervised method is able to solve IVPs with high accuracy. In order to demonstrate the efficiency of the proposed approach, we also compare its solutions with the solutions obtained by a previously proposed neural network method for representative examples.
机译:我们通过使用无监督径向基函数网络为一阶初值问题(IVP)的近似解提供了一种数值方法。所提出的无监督方法能够高精度地求解IVP。为了证明所提出方法的有效性,我们还将其解决方案与通过先前提出的神经网络方法获得的解决方案进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号