首页> 外文期刊>Neural processing letters >A New Conjugate Gradient Method with Smoothing L_(1/2) Regularization Based on a Modified Secant Equation for Training Neural Networks
【24h】

A New Conjugate Gradient Method with Smoothing L_(1/2) Regularization Based on a Modified Secant Equation for Training Neural Networks

机译:基于修正割线方程的平滑L_(1/2)正则化共轭梯度训练神经网络新方法

获取原文
获取原文并翻译 | 示例

摘要

Proposed in this paper is a new conjugate gradient method with smoothing L-1/2 regularization based on a modified secant equation for training neural networks, where a descent search direction is generated by selecting an adaptive learning rate based on the strong Wolfe conditions. Two adaptive parameters are introduced such that the new training method possesses both quasi-Newton property and sufficient descent property. As shown in the numerical experiments for five benchmark classification problems from UCI repository, compared with the other conjugate gradient training algorithms, the new training algorithm has roughly the same or even better learning capacity, but significantly better generalization capacity and network sparsity. Under mild assumptions, a global convergence result of the proposed training method is also proved.
机译:本文提出了一种新的基于平滑L-1 / 2正则化的共轭梯度方法,该方法基于用于训练神经网络的改进割线方程,其中基于强Wolfe条件通过选择自适应学习率来生成下降搜索方向。引入了两个自适应参数,使得新的训练方法既具有准牛顿特性又具有足够的下降特性。如来自UCI资料库的五个基准分类问题的数值实验所示,与其他共轭梯度训练算法相比,新的训练算法具有大致相同甚至更好的学习能力,但泛化能力和网络稀疏性明显更好。在温和的假设下,还证明了所提训练方法的全局收敛性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号