首页> 外文期刊>Neural, Parallel & Scientific Computations >NEURAL NETWORK BASED INDOOR LOCALIZATION FOR WIRELESS SENSOR NETWORK
【24h】

NEURAL NETWORK BASED INDOOR LOCALIZATION FOR WIRELESS SENSOR NETWORK

机译:基于神经网络的无线传感器网络室内定位

获取原文
获取原文并翻译 | 示例

摘要

In Wireless Sensor Network (WSN), location estimation (Localization) is important for routing efficiency and localization-aware services. This paper examines the WSN application which allows indoor localization based on the neural network and grid sensor training phase for accurate localization of sensors. The communication between the modules is monitored during the experiment whereby the received radio signal strength indicator (RSSI) values are recorded by a mobile sensor node. The received data used for training the feed-forward type of neural network such as Levenberg-Marquardt (LM) and Back Propagation Algorithm (BPA). This paper provides a solution to discover sensor nodes in WSN's using the past and present values obtained from neighbouring nodes based on neural networks. LM and BPA algorithms are used to find shortest distance between node and coverage of the node. This solution can be also a way to discover the malfunctioning nodes that are not a subject of an attack. Being localized on the base station level, this algorithm is suitable even for large-scale sensor networks.
机译:在无线传感器网络(WSN)中,位置估计(本地化)对于路由效率和支持本地化的服务很重要。本文研究了WSN应用程序,该应用程序允许基于神经网络和网格传感器训练阶段进行室内定位,以实现传感器的精确定位。在实验过程中监视模块之间的通信,从而由移动传感器节点记录接收到的无线电信号强度指示器(RSSI)值。接收到的数据用于训练神经网络的前馈类型,例如Levenberg-Marquardt(LM)和Back Propagation Algorithm(BPA)。本文提供了一种解决方案,该解决方案使用基于神经网络的相邻节点的过去和现在值来发现WSN中的传感器节点。 LM和BPA算法用于查找节点与节点覆盖范围之间的最短距离。此解决方案也可以是发现不是攻击对象的故障节点的方法。该算法位于基站级别,甚至适用于大规模传感器网络。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号