首页> 外文期刊>Neural, Parallel & Scientific Computations >DISCRETE TIME POISSON QUEUES OPERATED BY TWO HETEROGENEOUS SERVERS UNDER 'FIRST COME FIRST SERVED' QUEUE DISCIPLINE
【24h】

DISCRETE TIME POISSON QUEUES OPERATED BY TWO HETEROGENEOUS SERVERS UNDER 'FIRST COME FIRST SERVED' QUEUE DISCIPLINE

机译:两个异类服务器在“先来先服务”队列规则下操作的离散时间泊松​​队列

获取原文
获取原文并翻译 | 示例

摘要

The proposed discrete-time queueing systems are Geo(λ)/Geo(μ_1)+Geo(μ_2)/2 and Geo(λ)/Geo(μ_1),Geo(μ_2)/2 that have an infinite number of waiting positions with one faster server i.e. server-1 and a slow server i.e. server-2. If the slow server is free, then according to the classical First Come First Served (FCFS) discipline, an incoming customer is assigned to the slow server. Now since this customer is getting the slowest possible service, customers arriving subsequently might clear out of the system earlier by getting service from the faster server. This is clearly a violation of the FCFS principle. Such a violation is greater for greater heterogeneity of the service capacities of the two servers. For such a situation, this paper proposes how a customer might find it preferable to wait for service at the faster server than to go into the slow server without violating of the FCFS principle through queue discipline-Ⅰ and queue discipline-Ⅱ. Further time axis is divided into fixed length intervals or slots. Customers arrive during the consecutive slots, but they can only start service at the beginning of slots. The numbers of customers that arrive in successive slots are independent, identically distributed (i.i.d.) random variables subject to a condition that only one customer can arrive in a slot with probability λ (0 < λ < 1) and that no customer arrive in a slot with probability 1 - λ. Customer service times are integer multiples of the slot length, which implies that customers leave the system at slot boundaries. All customers are served either by server-Ⅰ according to geometric service time distribution with mean rate μ_1 or by server-2 with geometric service time distribution where mean rate is μ_2 < μ_1 The steady state analysis is then discussed and numerical values to the steady state expected number of customers E(N)_(Geo/Geo+Geo/2), and E(N)_(Geo/Geo,Geo/2) have been computed. To check if the proposed queues operate under FCFS rule and thus satisfy the Little's formula λW = E(N), the actual expected waiting times W_(Geo/Geo+Geo/2) and W_(Geo/Geo,Geo/2) of customers in the system are then calculated numerically. A simple comparison study over these numerical measures proves that there is an insignificant difference between E(N)_(Geo/Geo+Geo/2), and E(N)_(Geo/Geo,Geo/2) values and between the values W_(Geo/Geo+Geo/2) and W_(Geo/Geo,Geo/2) due to the fact that the proposed two alternative queue disciplines here minimize violations of the FCFS discipline in the long run. Finally Geo(λ)/Geo(μ_1)+Geo(μ_2)/2 queueing model is applied to model a single computing node as a server to obtain the power consumption and the associated expected cost for a specific set of input values.
机译:提出的离散时间排队系统是Geo(λ)/ Geo(μ_1)+ Geo(μ_2)/ 2和Geo(λ)/ Geo(μ_1),Geo(μ_2)/ 2,它们具有无限数量的等待位置,一个较快的服务器(即服务器1)和一个较慢的服务器(即服务器2)。如果慢速服务器是免费的,则根据传统的先来先服务(FCFS)准则,将传入客户分配给慢速服务器。现在,由于此客户获得的服务可能是最慢的,因此随后到达的客户可以通过从更快的服务器获取服务来更早地将其从系统中清除。这显然违反了FCFS原则。对于两个服务器的服务容量的更大异质性,这种冲突更大。针对这种情况,本文提出了在不违反队列规则Ⅰ和队列规则Ⅱ的情况下,客户如何发现比在慢速服务器上等待服务而不是进入慢速服务器更好的选择。进一步的时间轴分为固定长度间隔或时隙。客户在连续的时段内到达,但他们只能在时段的开头开始服务。到达连续插槽的客户数量是独立的,均匀分布的(iid)随机变量,其条件是只有一个客户可以以概率λ(0 <λ<1)到达插槽,并且没有客户到达插槽概率为1-λ。客户服务时间是插槽长度的整数倍,这意味着客户在插槽边界离开系统。服务器Ⅰ根据几何服务时间分布以平均速率μ_1为所有客户提供服务,或者服务器2根据几何服务时间分布以平均速率为μ_2<μ_1进行服务。然后讨论稳态分析并给出稳态的数值已计算出预期的客户数量E(N)_(Geo / Geo + Geo / 2)和E(N)_(Geo / Geo,Geo / 2)。为了检查建议的队列是否在FCFS规则下运行并因此满足Little公式λW= E(N),实际的预期等待时间W_(Geo / Geo + Geo / 2)和W_(Geo / Geo,Geo / 2)为然后以数字方式计算系统中的客户。通过对这些数值度量的简单比较研究,可以证明E(N)_(Geo / Geo + Geo / 2)和E(N)_(Geo / Geo,Geo / 2)值之间以及之间的差异不显着。值W_(Geo / Geo + Geo / 2)和W_(Geo / Geo,Geo / 2)是由于以下事实:从长远来看,此处建议的两个替代队列规则将对FCFS规则的违反降到最低。最后,将Geo(λ)/ Geo(μ_1)+ Geo(μ_2)/ 2排队模型应用于对作为服务器的单个计算节点进行建模,以获取功耗和特定输入值集的关联预期成本。

著录项

  • 来源
    《Neural, Parallel & Scientific Computations》 |2015年第4期|393-409|共17页
  • 作者

    R. SIVASAMY; K. THAGA;

  • 作者单位

    Department of Statistics, Faculty of Social Sciences, University of Botswana, Gaborone, BP 00705;

    Department of Statistics, Faculty of Social Sciences, University of Botswana, Gaborone, BP 00705;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号