首页> 外文期刊>IEEE Transactions on Neural Networks >Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multidimensional maps
【24h】

Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multidimensional maps

机译:模糊ARTMAP:用于模拟多维地图增量监督学习的神经网络体系结构

获取原文
获取原文并翻译 | 示例

摘要

A neural network architecture is introduced for incremental supervised learning of recognition categories and multidimensional maps in response to arbitrary sequences of analog or binary input vectors, which may represent fuzzy or crisp sets of features. The architecture, called fuzzy ARTMAP, achieves a synthesis of fuzzy logic and adaptive resonance theory (ART) neural networks by exploiting a close formal similarity between the computations of fuzzy subsethood and ART category choice, resonance, and learning. Four classes of simulation illustrated fuzzy ARTMAP performance in relation to benchmark backpropagation and generic algorithm systems. These simulations include finding points inside versus outside a circle, learning to tell two spirals apart, incremental approximation of a piecewise-continuous function, and a letter recognition database. The fuzzy ARTMAP system is also compared with Salzberg's NGE systems and with Simpson's FMMC system.
机译:引入了神经网络体系结构,以响应于模拟或二进制输入向量的任意序列,对识别类别和多维映射进行增量监督学习,这可以表示模糊或清晰的特征集。该架构称为模糊ARTMAP,通过利用模糊子集的计算与ART类别选择,共振和学习之间的紧密形式相似性,实现了模糊逻辑和自适应共振理论(ART)神经网络的综合。四类仿真说明了相对于基准反向传播和通用算法系统的模糊ARTMAP性能。这些模拟包括找到圆内外的点,学会分辨两个螺旋线,逐段连续函数的增量逼近以及字母识别数据库。模糊ARTMAP系统也与Salzberg的NGE系统和Simpson的FMMC系统进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号