首页> 外文期刊>IEEE Transactions on Neural Networks >Comparison of floating gate neural network memory cells in standard VLSI CMOS technology
【24h】

Comparison of floating gate neural network memory cells in standard VLSI CMOS technology

机译:标准VLSI CMOS技术中浮栅神经网络存储单元的比较

获取原文
获取原文并翻译 | 示例

摘要

Several floating gate MOSFET structures, for potential use as analog memory elements in neural networks, have been fabricated in a standard 2 mu m double-polysilicon CMOS process. Their physical and programming characteristics are compared with each other and with similar structures reported in the literature. None of the circuits under consideration require special fabrication techniques. The criteria used to determine the structure most suitable for neural network memory applications include the symmetry of charging and discharging characteristics, programming voltage magnitudes, the area required, and the effectiveness of geometric field enhancement techniques. This work provides a layout for an analog neural network memory based on previously unexplored criteria and results. The authors have found that the best designs (a) use the poly1 to poly2 oxide for injection; (b) need not utilize 'field enhancement' techniques; (c) use poly1 to diffusion oxide for a coupling capacitor; and (d) size capacitor ratios to provide a wide range of possible programming voltages.
机译:在标准的2微米双多晶硅CMOS工艺中已经制造出几种浮栅MOSFET结构,有可能用作神经网络中的模拟存储元件。将它们的物理和编程特性相互比较,并与文献中报道的相似结构进行比较。所考虑的电路均不需要特殊的制造技术。用于确定最适合神经网络存储器应用的结构的标准包括充电和放电特性的对称性,编程电压幅度,所需的面积以及几何场增强技术的有效性。这项工作基于以前未探索的标准和结果为模拟神经网络存储器提供了布局。作者发现最佳的设计方案(a)使用poly1至poly2氧化物进行注射; (b)无需利用“场增强”技术; (c)使用poly1扩散氧化物作为耦合电容器; (d)确定电容器的比例,以提供各种可能的编程电压。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号