首页> 外文期刊>IEEE Transactions on Neural Networks >Implementation of parallel thinning algorithms using recurrent neural networks
【24h】

Implementation of parallel thinning algorithms using recurrent neural networks

机译:使用递归神经网络实现并行稀疏算法

获取原文
获取原文并翻译 | 示例

摘要

The use of recurrent neural networks for skeletonization and thinning of binary images is investigated. The networks are trained to learn a deletion rule and they iteratively delete object pixels until only the skeleton remains. Recurrent neural network architectures that implement a variety of thinning algorithms, such as the Rosenfeld-Kak algorithm and the Wang-Zhang (WZ) algorithm, are presented. A modified WZ algorithm which produces skeletons that are intuitively more pleasing is introduced.
机译:研究了使用递归神经网络对二进制图像进行骨架化和细化。网络经过训练以学习删除规则,并且它们反复删除对象像素,直到仅保留骨骼为止。提出了实现各种稀疏算法的递归神经网络体系结构,例如Rosenfeld-Kak算法和Wang-Zhang(WZ)算法。引入了一种改进的WZ算法,该算法可产生直观上更令人愉悦的骨骼。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号