首页> 外文期刊>IEEE Transactions on Neural Networks >Functional approximation by feed-forward networks: a least-squares approach to generalization
【24h】

Functional approximation by feed-forward networks: a least-squares approach to generalization

机译:前馈网络的功能逼近:最小二乘法进行泛化

获取原文
获取原文并翻译 | 示例

摘要

This paper considers a least-squares approach to function approximation and generalization. The particular problem addressed is one in which the training data are noiseless and the requirement is to define a mapping that approximates the data and that generalizes to situations in which data samples are corrupted by noise in the input variables. The least-squares approach produces a generalizer that has the form of a radial basis function network for a finite number of training samples. The finite sample approximation is valid provided that the perturbations due to noise on the expected operating conditions are large compared to the sample spacing in the data space. In the other extreme of small noise perturbations, a particular parametric form must be assumed for the generalizer. It is shown that better generalization will occur if the error criterion used in training the generalizer is modified by the addition of a specific regularization term. This is illustrated by an approximator that has a feedforward architecture and is applied to the problem of point-source location using the outputs of an array of receivers in the focal-plane of a lens.
机译:本文考虑了最小二乘方法进行函数逼近和泛化。解决的特定问题是训练数据无噪声,并且要求定义一种映射,该映射使数据近似,并概括到输入变量中的数据样本被噪声破坏的情况。最小二乘方法可生成泛化器,该泛化器具有有限数量的训练样本的径向基函数网络形式。只要与数据空间中的样本间隔相比,在预期操作条件下由于噪声引起的扰动较大,则有限样本近似值是有效的。在小噪声干扰的另一个极端情况下,必须为通用器采用特定的参数形式。结果表明,如果通过添加特定的正则化项来修改训练归纳器中使用的错误准则,则会发生更好的归纳。这由具有前馈架构的逼近器进行说明,该逼近器使用透镜焦平面中的接收器阵列的输出应用于点源定位问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号