首页> 外文期刊>IEEE Transactions on Neural Networks >A nonlinear projection method based on Kohonen's topology preserving maps
【24h】

A nonlinear projection method based on Kohonen's topology preserving maps

机译:基于Kohonen拓朴图的非线性投影方法

获取原文
获取原文并翻译 | 示例

摘要

A nonlinear projection method is presented to visualize high-dimensional data as a 2D image. The proposed method is based on the topology preserving mapping algorithm of Kohonen. The topology preserving mapping algorithm is used to train a 2D network structure. Then the interpoint distances in the feature space between the units in the network are graphically displayed to show the underlying structure of the data. Furthermore, we present and discuss a new method to quantify how well a topology preserving mapping algorithm maps the high-dimensional input data onto the network structure. This is used to compare our projection method with a well-known method of Sammon (1969). Experiments indicate that the performance of the Kohonen projection method is comparable or better than Sammon's method for the purpose of classifying clustered data. Its time-complexity only depends on the resolution of the output image, and not on the size of the dataset. A disadvantage, however, is the large amount of CPU time required.
机译:提出了一种非线性投影方法,以将高维数据可视化为2D图像。该方法基于Kohonen的拓扑保留映射算法。拓扑保留映射算法用于训练2D网络结构。然后以图形方式显示网络中各单元之间特征空间中的点间距,以显示数据的基础结构。此外,我们提出并讨论了一种新方法,可以量化拓扑保留映射算法将高维输入数据映射到网络结构的程度。这用于将我们的投影方法与Sammon(1969)的著名方法进行比较。实验表明,在对聚类数据进行分类的过程中,Kohonen投影方法的性能与Sammon方法相当或更好。它的时间复杂度仅取决于输出图像的分辨率,而不取决于数据集的大小。但是,缺点是需要大量的CPU时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号