首页> 外文期刊>IEEE Transactions on Neural Networks >Fast neural net simulation with a DSP processor array
【24h】

Fast neural net simulation with a DSP processor array

机译:使用DSP处理器阵列进行快速神经网络仿真

获取原文
获取原文并翻译 | 示例

摘要

This paper describes the implementation of a fast neural net simulator on a novel parallel distributed-memory computer. A 60-processor system, named MUSIC (multiprocessor system with intelligent communication), is operational and runs the backpropagation algorithm at a speed of 330 million connection updates per second (continuous weight update) using 32-b floating-point precision. This is equal to 1.4 Gflops sustained performance. The complete system with 3.8 Gflops peak performance consumes less than 800 W of electrical power and fits into a 19-in rack. While reaching the speed of modern supercomputers, MUSIC still can be used as a personal desktop computer at a researcher's own disposal. In neural net simulation, this gives a computing performance to a single user which was unthinkable before. The system's real-time interfaces make it especially useful for embedded applications.
机译:本文介绍了一种新型并行分布式内存计算机上的快速神经网络模拟器的实现。一个名为MUSIC(具有智能通信功能的多处理器系统)的60处理器系统可以运行,并使用32位浮点精度以每秒3.3亿个连接更新(连续权重更新)的速度运行反向传播算法。这等于1.4 Gflops的持续性能。完整的系统具有3.8 Gflops的峰值性能,消耗的功率不到800 W,可装入19英寸机架中。在达到现代超级计算机的速度的同时,MUSIC仍可作为研究人员自行使用的个人台式计算机。在神经网络仿真中,这为单个用户提供了以前无法想象的计算性能。该系统的实时接口使其对于嵌入式应用程序特别有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号