首页> 外文期刊>IEEE Transactions on Neural Networks >Digitally programmable analog building blocks for the implementation of artificial neural networks
【24h】

Digitally programmable analog building blocks for the implementation of artificial neural networks

机译:用于实现人工神经网络的数字可编程模拟构造块

获取原文
获取原文并翻译 | 示例

摘要

This paper describes the design, experimental characterization and behavior modeling of a homogeneous set of building blocks necessary to construct in analog hardware feed-forward artificial neural networks. A novel synapse architecture is proposed using a quasi-passive D/A (digital-to-analog) converter followed by a four-quadrant analog-digital multiplier, its main advantages are 1) increased signal input range; 2) improved area/weight resolution ratio; 3) on-chip refreshing of the weight value; and 4) serial loading the weight bits. The neurons are built using MOS (metal-oxide semiconductor) transistors operating in the saturation region and exploiting the inherent quadratic characteristics. Experimental results obtained from a demonstration prototype chip realized in a 1.2 /spl mu/m double-poly, double-metal CMOS (complimentary MOS) technology show good agreement with the design specifications. A simple application of the proposed building blocks is illustrated based on the mixed-signal simulation of the corresponding behavior models constructed from the experimental characterization data.
机译:本文介绍了在模拟硬件前馈人工神经网络中构建所需的一组均质构建块的设计,实验表征和行为建模。提出了一种新颖的突触架构,该架构使用准无源D / A(数模)转换器和四象限模数乘法器,其主要优点是:1)增加了信号输入范围; 2)改进的面积/重量分辨率; 3)片内刷新权重值; 4)串行加载权重位。使用在饱和区工作的MOS(金属氧化物半导体)晶体管构建神经元,并利用固有的二次特性。从演示原型芯片获得的实验结果以1.2 / splμm/ m的双多晶硅双金属CMOS(互补MOS)技术实现,与设计规格具有很好的一致性。基于从实验特征数据构建的相应行为模型的混合信号仿真,说明了所建议构建块的简单应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号