首页> 外文期刊>IEEE Transactions on Neural Networks >A simplification of the backpropagation-through-time algorithm for optimal neurocontrol
【24h】

A simplification of the backpropagation-through-time algorithm for optimal neurocontrol

机译:最佳时间神经控制的时间反向传播算法的简化

获取原文
获取原文并翻译 | 示例

摘要

Backpropagation-through-time (BPTT) is the temporal extension of backpropagation which allows a multilayer neural network to approximate an optimal state-feedback control law provided some prior knowledge (Jacobian matrices) of the process is available. In this paper, a simplified version of the BPTT algorithm is proposed which more closely respects the principle of optimality of dynamic programming. Besides being simpler, the new algorithm is less time-consuming and allows in some cases the discovery of better control laws. A formal justification of this simplification is attempted by mixing the Lagrangian calculus underlying BPTT with Bellman-Hamilton-Jacobi equations. The improvements due to this simplification are illustrated by two optimal control problems: the rendezvous and the bioreactor.
机译:时间反向传播(BPTT)是反向传播的时间扩展,它允许多层神经网络近似最佳状态反馈控制定律,前提是该过程具有一些先验知识(雅可比矩阵)。在本文中,提出了BPTT算法的简化版本,它更紧密地遵循了动态规划的最优原理。除了更简单之外,新算法耗时更少,并且在某些情况下允许发现更好的控制律。通过将基于BPTT的拉格朗日演算与Bellman-Hamilton-Jacobi方程混合,可以尝试对此简化​​形式进行形式化证明。由于两个简单的控制问题,汇合点和生物反应器说明了这种简化带来的改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号