首页> 外文期刊>IEEE Transactions on Neural Networks >Toward a general-purpose analog VLSI neural network with on-chip learning
【24h】

Toward a general-purpose analog VLSI neural network with on-chip learning

机译:面向具有片上学习功能的通用模拟VLSI神经网络

获取原文
获取原文并翻译 | 示例

摘要

This paper describes elements necessary for a general-purpose low-cost very large scale integration (VLSI) neural network. By choosing a learning algorithm that is tolerant of analog nonidealities, the promise of high-density analog VLSI is realized. A 64-synapse, 8-neuron proof-of-concept chip is described. The synapse, which occupies only 4900 /spl mu/m/sup 2/ in a 2-/spl mu/m technology, includes a hybrid of nonvolatile and dynamic weight storage that provides fast and accurate learning as well as reliable long-term storage with no refreshing. The architecture is user-configurable in any one-hidden-layer topology. The user-interface is fully microprocessor compatible. Learning is accomplished with minimal external support; the user need only present inputs, targets, and a clock. Learning is fast and reliable. The chip solves four-bit parity in an average of 680 ms and is successful in about 96% of the trials.
机译:本文介绍了通用低成本超大规模集成(VLSI)神经网络所必需的元素。通过选择能够容忍模拟非理想的学习算法,可以实现高密度模拟VLSI的希望。描述了一种64突触,8神经元的概念验证芯片。突触在2- / spl mu / m技术中仅占4900 / spl mu / m / sup 2 /,包括非易失性和动态重量存储的混合,可提供快速,准确的学习以及可靠的长期存储没有刷新。用户可以在任何一个隐藏层拓扑中配置该体系结构。用户界面与微处理器完全兼容。学习需要最少的外部支持;用户只需要提供输入,目标和时钟即可。学习是快速而可靠的。该芯片平均可在680毫秒内解决四位奇偶校验问题,并在约96%的试验中获得成功。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号