首页> 外文期刊>IEEE Transactions on Neural Networks >Neural techniques for combinatorial optimization with applications
【24h】

Neural techniques for combinatorial optimization with applications

机译:用于组合优化与应用程序的神经技术

获取原文
获取原文并翻译 | 示例

摘要

After more than a decade of research, there now exist several neural-network techniques for solving NP-hard combinatorial optimization problems. Hopfield networks and self-organizing maps are the two main categories into which most of the approaches can be divided. Criticism of these approaches includes the tendency of the Hopfield network to produce infeasible solutions, and the lack of generalizability of the self-organizing approaches (being only applicable to Euclidean problems). The paper proposes two new techniques which have overcome these pitfalls: a Hopfield network which enables feasibility of the solutions to be ensured and improved solution quality through escape from local minima, and a self-organizing neural network which generalizes to solve a broad class of combinatorial optimization problems. Two sample practical optimization problems from Australian industry are then used to test the performances of the neural techniques against more traditional heuristic solutions.
机译:经过十多年的研究,现在存在几种用于解决NP硬组合优化问题的神经网络技术。 Hopfield网络和自组织图是大多数方法可以分为的两个主要类别。对这些方法的批评包括Hopfield网络倾向于生成不可行的解决方案,以及缺乏自组织方法的一般性(仅适用于欧几里得问题)。本文提出了两种克服了这些缺陷的新技术:一个Hopfield网络(通过避免局部极小值来确保解决方案的可行性和改进解决方案的质量),以及一个自组织神经网络,用于概括解决广泛的组合问题。优化问题。然后使用来自澳大利亚工业界的两个样本实际优化问题来针对更传统的启发式解决方案测试神经技术的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号