首页> 外文期刊>IEEE Transactions on Neural Networks >Multiobjective genetic algorithm partitioning for hierarchical learning of high-dimensional pattern spaces: a learning-follows-decomposition strategy
【24h】

Multiobjective genetic algorithm partitioning for hierarchical learning of high-dimensional pattern spaces: a learning-follows-decomposition strategy

机译:高维模式空间分层学习的多目标遗传算法划分:学习跟随分解策略

获取原文
获取原文并翻译 | 示例

摘要

We present a novel approach to partitioning pattern spaces using a multiobjective genetic algorithm for identifying (near-)optimal subspaces for hierarchical learning. Our approach of "learning-follows-decomposition" is a generic solution to complex high-dimensional problems where the input space is partitioned prior to the hierarchical neural domain instead of by competitive learning. In this technique, clusters are generated on the basis of fitness of purpose. Results of partitioning pattern spaces are presented. This strategy of preprocessing the data and explicitly optimizing the partitions for subsequent mapping onto a hierarchical classifier is found both to reduce the learning complexity and the classification time with no degradation in overall classification error rate. The classification performance of various algorithms is compared and it is suggested that the neural modules are superior for learning the localized decision surfaces of such partitions and offer better generalization.
机译:我们提出了一种使用多目标遗传算法对模式空间进行划分的新颖方法,该算法可识别(近)最优子空间以进行分层学习。我们的“学习跟随分解”方法是一种复杂的高维问题的通用解决方案,在该问题中,输入空间在分层神经域之前进行分区,而不是通过竞争性学习进行分区。在这种技术中,根据目的适合性生成聚类。给出了划分模式空间的结果。发现这种预处理数据并显式优化分区以供随后映射到分层分类器的策略,既可以降低学习复杂度,又可以减少分类时间,而不会降低总体分类错误率。比较了各种算法的分类性能,并提出神经模块在学习此类分区的局部决策面方面具有优越性,并且具有更好的概括性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号