首页> 外文期刊>IEEE Transactions on Neural Networks >Fusion of face and speech data for person identity verification
【24h】

Fusion of face and speech data for person identity verification

机译:融合脸部和语音数据以验证人的身份

获取原文
获取原文并翻译 | 示例

摘要

Biometric person identity authentication is gaining more and more attention. The authentication task performed by an expert is a binary classification problem: reject or accept identity claim. Combining experts, each based on a different modality (speech, face, fingerprint, etc.), increases the performance and robustness of identity authentication systems. In this context, a key issue is the fusion of the different experts for taking a final decision (i.e., accept or reject identity claim). We propose to evaluate different binary classification schemes (support vector machine, multilayer perceptron, C4.5 decision tree, Fisher's linear discriminant, Bayesian classifier) to carry on the fusion. The experimental results show that support vector machines and Bayesian classifier achieve almost the same performances, and both outperform the other evaluated classifiers.
机译:生物特征识别身份越来越受到人们的关注。专家执行的身份验证任务是一个二进制分类问题:拒绝或接受身份声明。专家的组合,每个基于不同的方式(语音,面部,指纹等),可以提高身份认证系统的性能和健壮性。在这种情况下,关键问题是不同专家的融合以做出最终决定(即接受或拒绝身份声明)。我们建议评估不同的二进制分类方案(支持向量机,多层感知器,C4.5决策树,Fisher线性判别式,贝叶斯分类器)进行融合。实验结果表明,支持向量机和贝叶斯分类器实现了几乎相同的性能,均优于其他评估的分类器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号