首页> 外文期刊>IEEE Transactions on Neural Networks >An ordering algorithm for pattern presentation in fuzzy ARTMAP that tends to improve generalization performance
【24h】

An ordering algorithm for pattern presentation in fuzzy ARTMAP that tends to improve generalization performance

机译:模糊ARTMAP中模式表示的排序算法,倾向于提高泛化性能

获取原文
获取原文并翻译 | 示例

摘要

We introduce a procedure, based on the max-min clustering method, that identifies a fixed order of training pattern presentation for fuzzy adaptive resonance theory mapping (ARTMAP). This procedure is referred to as the ordering algorithm, and the combination of this procedure with fuzzy ARTMAP is referred to as ordered fuzzy ARTMAP. Experimental results demonstrate that ordered fuzzy ARTMAP exhibits a generalization performance that is better than the average generalization performance of fuzzy ARTMAP, and in certain cases as good as, or better than the best fuzzy ARTMAP generalization performance. We also calculate the number of operations required by the ordering algorithm and compare it to the number of operations required by the training phase of fuzzy ARTMAP. We show that, under mild assumptions, the number of operations required by the ordering algorithm is a fraction of the number of operations required by fuzzy ARTMAP.
机译:我们引入基于最大-最小聚类方法的过程,该过程为模糊自适应共振理论映射(ARTMAP)识别训练模式表示的固定顺序。该过程被称为排序算法,并且该过程与模糊ARTMAP的组合被称为有序模糊ARTMAP。实验结果表明,有序模糊ARTMAP的泛化性能优于模糊ARTMAP的平均泛化性能,在某些情况下,其性能可达到或优于最佳模糊ARTMAP泛化性能。我们还计算排序算法所需的操作数,并将其与模糊ARTMAP训练阶段所需的操作数进行比较。我们表明,在温和的假设下,排序算法所需的操作数只是模糊ARTMAP所需的操作数的一小部分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号