首页> 外文期刊>IEEE Transactions on Neural Networks >A fast U-D factorization-based learning algorithm with applications to nonlinear system modeling and identification
【24h】

A fast U-D factorization-based learning algorithm with applications to nonlinear system modeling and identification

机译:基于U-D分解的快速学习算法及其在非线性系统建模和辨识中的应用

获取原文
获取原文并翻译 | 示例

摘要

A fast learning algorithm for training multilayer feedforward neural networks (FNN) by using a fading memory extended Kalman filter (FMEKF) is presented first, along with a technique using a self-adjusting time-varying forgetting factor. Then a U-D factorization-based FMEKF is proposed to further improve the learning rate and accuracy of the FNN. In comparison with the backpropagation (BP) and existing EKF-based learning algorithms, the proposed U-D factorization-based FMEKF algorithm provides much more accurate learning results, using fewer hidden nodes. It has improved convergence rate and numerical stability (robustness). In addition, it is less sensitive to start-up parameters (e.g., initial weights and covariance matrix) and the randomness in the observed data. It also has good generalization ability and needs less training time to achieve a specified learning accuracy. Simulation results in modeling and identification of nonlinear dynamic systems are given to show the effectiveness and efficiency of the proposed algorithm.
机译:首先提出了一种快速学习算法,该算法通过使用衰落存储器扩展卡尔曼滤波器(FMEKF)训练多层前馈神经网络(FNN),以及使用自调整时变遗忘因子的技术。然后提出了一种基于U-D分解的FMEKF算法,以进一步提高FNN的学习速度和准确性。与反向传播(BP)和现有的基于EKF的学习算法相比,本文提出的基于U-D因式分解的FMEKF算法使用更少的隐藏节点提供了更为准确的学习结果。它具有提高的收敛速度和数值稳定性(鲁棒性)。此外,它对启动参数(例如,初始权重和协方差矩阵)和观测数据中的随机性较不敏感。它还具有良好的泛化能力,并且需要较少的培训时间即可达到指定的学习准确性。给出了非线性动力学系统建模和辨识的仿真结果,表明了该算法的有效性和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号