首页> 外文期刊>IEEE Transactions on Neural Networks >A study of cloud classification with neural networks using spectral and textural features
【24h】

A study of cloud classification with neural networks using spectral and textural features

机译:基于光谱和纹理特征的神经网络云分类研究

获取原文
获取原文并翻译 | 示例

摘要

The problem of cloud data classification from satellite imagery using neural networks is considered. Several image transformations such as singular value decomposition (SVD) and wavelet packet (WP) were used to extract the salient spectral and textural features attributed to satellite cloud data in both visible and infrared (IR) channels. In addition, the well-known gray-level cooccurrence matrix (GLCM) method and spectral features were examined for the sake of comparison. Two different neural-network paradigms namely probability neural network (PNN) and unsupervised Kohonen self-organized feature map (SOM) were examined and their performance were also benchmarked on the geostationary operational environmental satellite (GOES) 8 data. Additionally, a postprocessing scheme was developed which utilizes the contextual information in the satellite images to improve the final classification accuracy. Overall, the performance of the PNN when used in conjunction with these feature extraction and postprocessing schemes showed the potential of this neural-network-based cloud classification system.
机译:考虑了使用神经网络对卫星图像进行云数据分类的问题。几种图像转换(例如奇异值分解(SVD)和小波包(WP))用于提取可见光和红外(IR)通道中归因于卫星云数据的显着光谱和纹理特征。此外,为了进行比较,还研究了著名的灰度共生矩阵(GLCM)方法和光谱特征。研究了两种不同的神经网络范例,即概率神经网络(PNN)和无监督的Kohonen自组织特征图(SOM),并在对地静止作战环境卫星(GOES)8数据上对它们的性能进行了基准测试。此外,开发了一种后处理方案,该方案利用了卫星图像中的上下文信息来提高最终分类的准确性。总体而言,与这些特征提取和后处理方案结合使用时,PNN的性能表明了这种基于神经网络的云分类系统的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号